Course detail

Information system security

FEKT-LBISAcad. year: 2010/2011

Basic terms. Cryptography security mechanisms (encrypting, signing, hashing). Communication security mechanisms (filtering methods, spread spectrum methods, error control codes and protocols). Computer security mechanisms (access control, intrusion detection, software protection, data security, backup, audit, emission security). Other security mechanisms. Security policy. Risk analysis and management. Evaluations of the information system security.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will obtain knowledge needed for the solution of the information system security.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for completion of a course are specified by a regulation issued by the lecturer responsible for the course and updated for every.

Course curriculum

Lectures:
1. Basic terms.
2. Symmetric cryptosystems.
3. Asymmetric cryptosystems.
4. Secure communications protocols.
5. Emission security.
6. Error codes.
7. Protections of communications channels.
8. Filtering methods, intrusion detection systems.
9. Access control methods.
10. Computer security.
11. Physical protections.
12. Security management in information systems.
13. Security evaluations of information systems.

Numerical excercises:
1. Applications of secrecy theory.
2. Applications of symmetric cryptography.
3. Applications of asymmetric cryptography.
4. Applications of secure communication protocols.
5. Applications of emission security.
6. Applications of error codes.
7. Applications of spread spectrum methods.
8. Applications of communications controls.
9. Applications of access methods.
10. Applications of software protections.
11. Physical security in practice.
12. Risk management in practice.
13. Applications of ISO 15408.

Work placements

Not applicable.

Aims

The goal is to become familiar with the basic terms of information system security, security mechanisms and security evaluation methods.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-ML Master's

    branch ML-TIT , 1 year of study, winter semester, elective specialised

  • Programme EEKR-CZV lifelong learning

    branch EE-FLE , 1 year of study, winter semester, elective specialised

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Basic terms.
2. Symmetric cryptosystems.
3. Asymmetric cryptosystems.
4. Secure communications protocols.
5. Emission security.
6. Error codes.
7. Protections of communications channels.
8. Filtering methods, intrusion detection systems.
9. Access control methods.
10. Computer security.
11. Physical protections.
12. Security management in information systems.
13. Security evaluations of information systems.

Fundamentals seminar

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Applications of secrecy theory.
2. Applications of symmetric cryptography.
3. Applications of asymmetric cryptography.
4. Applications of secure communication protocols.
5. Applications of emission security.
6. Applications of error codes.
7. Applications of spread spectrum methods.
8. Applications of communications controls.
9. Applications of access methods.
10. Applications of software protections.
11. Physical security in practice.
12. Risk management in practice.
13. Applications of ISO 15408.