Author of thesis: Ing. Ondřej Šulc
Acad. year: 2022/2023
Supervisor: Ing. Jiří Hynek, Ph.D.
Reviewer: Ing. Vladimír Bartík, Ph.D.
Abstract:This thesis deals with the optimization of data processing from IoT sensors of smart cities into the form of key performance indicators (abbr. KPI). KPIs are a mean of monitoring a large amount of data and expressing the status of performance factors affecting the prosperity of the entire city. Data processing in this form is a computationally demanding process, but it consists of a large number of mutually independent calculations. Therefore the goal of this thesis was to perform optimization using parallelization. In parallel processing, calculations can be divided between multiple threads, enabling all available computing resources (CPU cores) to be fully used. This concept was practically implemented in the Smart City project of Logimic company. However, the project is built on the Node.js platform, and when using parallelization there are complications with the use of libraries for object-relational mapping (abbr. ORM). ORM libraries on the Node.js platform are not always ready to work in a parallel environment. This problem is solved by creating a separate instance of the used library for each parallel thread. The thesis focuses on reducing the overhead associated with this and also on the correct distribution of work between parallel threads so that all cores are used equally. The results of this work prove that optimizing IoT data processing using parallelization leads to a significant speedup that conforms to Amdahl's law, as overhead problems can be reduced to a negligible minimum.
key performance indikators, KPI, smart cities, internet of things, IoT, database systems, object-relational mapping, ORM, optimization, parallelization, multithreading, Typescript, Node.js
Date of defence
22.06.2023
Result of the defence
Defended (thesis was successfully defended)
Grading
A
Process of defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A.
Topics for thesis defence
- Jakou roli v celém systému hrají NoSQL databáze zmiňované v teoretické části?
- Kolik KPI je aktuálně v systému počítáno a jaké jejich množství se předpokládá v budoucnu po vaší optimalizaci?
- Co bylo přesně předmětem vaši práce? Můžete to popsat vlastními slovy?
- Proč jste používal relační databázi v práci s IoT?
- Uvažoval jste o dynamickém vyvažování zátěže?
Language of thesis
Czech
Faculty
Department
Study programme
Information Technology and Artificial Intelligence (MITAI)
Specialization
Cybersecurity (NSEC)
Composition of Committee
doc. Dr. Ing. Petr Hanáček (předseda)
prof. RNDr. Alexandr Meduna, CSc. (člen)
prof. Ing. Jiří Jaroš, Ph.D. (člen)
Ing. Vladimír Veselý, Ph.D. (člen)
Ing. Ondřej Kanich, Ph.D. (člen)
Mgr. Ing. Pavel Očenášek, Ph.D. (člen)
Supervisor’s report
Ing. Jiří Hynek, Ph.D.
Grade proposed by supervisor: A
Reviewer’s report
Ing. Vladimír Bartík, Ph.D.
Grade proposed by reviewer: B