Přístupnostní navigace
E-application
Search Search Close
Branch Details
FCHAbbreviation: DPAO_FCHAcad. year: 2022/2023
Programme: Physical Chemistry
Length of Study:
Tuition Fees: 4000 EUR/academic year for EU students, 4000 EUR/academic year for non-EU students
Accredited from: 16.10.2009Accredited until: 31.5.2024
Profile
The main objective of the study is to train the highly qualified professionals who will be prepared for independent, creative, scientific and research activities in the field of physical chemistry. Students are trained to formulate a scientific problem independently, propose hypotheses and procedures leading to its solving and attempt its confirmation on an experimental or theoretical level. Critical evaluation of published scientific information and the ability to communicate in English - both verbally and in written form, makes an integral part of the study.
Key learning outcomes
Occupational profiles of graduates with examples
The specialization trains professionals who will be able to participate in highly qualified scientific and research activities based on physically-chemical processes, namely in university departments, the departments of The Academy of Sciences, research institutes, but also in industrial research centres. The graduates are prepared for independent creative work in the area of physical chemistry. Due to a wide range of practical applications of physical chemistry, the graduates can find employments not only in physical and chemical research, but virtually in all chemical or chemistry related specializations.
Entry requirements
The admission to the Faculty of Chemistry is conditioned by the completion of the Master's program in the same or a related field. The basic prerequisites for the admission are: interest and aptitude for scientific work, knowledge of the English language and a very good study record achieved in the Master's program (grade point average of all passed examinations usually does not exceed 2.0).
Guarantor
prof. RNDr. František Krčma, Ph.D.
Issued topics of Doctoral Study Program
Advanced organic materials represent a very interesting alternative to traditional inorganic substances used in photonic applications. Organic materials provide a number of potential advantages such as flexibility, low weight, preparation with low-cost material printing techniques, wide range of parameter tuning, low environmental impact, etc. This work will deal with the study of the relationship between (especially) optical properties and the chemical structure of organic pi-conjugated molecules (dyes, pigments). One of the target applications will be organic solid-state lasers. Part of the work will be the preparation and study of such model structures. In particular, properties related to radiative and non-radiative processes after photoexcitation will be studied. Typical methods of study will include absorption and fluorescence spectroscopy, determination of fluorescence lifetime and quantum yields, and determination of threshold excitation energy to induce amplified spontaneous emission (ASE) and other parameters affecting their function. The work will take place within the Laboratory of Organic Electronics and Photonics (https://www.fch.vut.cz/vav/cmv/laboratore/elektro) at the Center for Materials Research at the Faculty of Chemistry, Brno University of Technology. Within this team, we have more than 20 years of experience in this field, evidenced by almost 200 publications cited more than 1000 times. FCH BUT is a proud holder of the HR Excellence in Research Award by the European Commission (https://www.vut.cz/en/but/hr-award).
Tutor: Vala Martin, prof. Mgr., Ph.D.
This work is focused on the use of stationary, time resolved and microscopic fluorescence techniques in research of physical properties of associative colloids. The information obtained will be correlated with technological parameters of associative colloids such as solubilization and solubilization capacity, stability, size distribution, etc. The study will acquire not only skills in various techniques of fluorescence spectroscopy, but also in comparative techniques such as light scattering techniques.
Tutor: Mravec Filip, doc. Ing., Ph.D.
The results, which have been obtained within the area of macroscopic non-equilibrium thermodynamics, show tighter links between chemical thermodynamics and kinetics than usually supposed. Thermodynamics delineates the general framework which determines, among other, also the form of rate equations and puts some restrictions on coefficients occurring in these equations. The corresponding thermodynamic theory has been elaborated only for the linear fluids to date and even here some interesting questions remain to be answered. During this PhD study, following problems will be solved successively: • kinetics in non-ideal fluid mixtures, applicability of activity in kinetic equations; • application of the thermodynamic theory on reaction mechanisms with activated complex, study of relationships to the corresponding microscopic theory (of activated complex) and to the preceding problem; • application of the theory on several selected published mechanisms, comparison of thus obtained kinetic equations with the published equations, discussion of the contribution of the novel theory to the praxis of reaction kinetics; • extension of the theory outside the linear fluid model, focused particularly on reacting systems with significant effect of diffusion and on the relationship between the rate of reaction and diffusion.
Tutor: Pekař Miloslav, prof. Ing., CSc.
Currently there is a big expansion in the development of nanomaterials that find their use in industry. As they become mass spread the risk of leaking into the environment increases and therefore it is necessary to monitor their influence on various ecosystems. Laser-Induced Breakdown Spectroscopy (LIBS) is an optical emission method suitable for elemental mapping of large sample surfaces. The information about biodistribution and bioaccumulation of material in the organism is crucial for correct evaluation of its toxic effect. The LIBS method can detect contaminants in plants with sufficient resolution. The goal of this work is to determine bioaccumulation and translocation of selected nanomaterials in plants and study of plasma activated water application on this bioaccumulation.
Tutor: Pořízka Pavel, doc. Ing., Ph.D.
Study plan wasn't generated yet for this year.