Přístupnostní navigace
E-application
Search Search Close
study programme
Faculty: CEITECAbbreviation: CEITEC-AMN-EN-KAcad. year: 2021/2022
Type of study programme: Doctoral
Study programme code: P0588D110003
Degree awarded: Ph.D.
Language of instruction: English
Tuition Fees: 3000 EUR/academic year for EU students, 3000 EUR/academic year for non-EU students
Accreditation: 26.4.2021 - 26.4.2031
Mode of study
Combined study
Standard study length
4 years
Programme supervisor
prof. RNDr. Radim Chmelík, Ph.D.
Doctoral Board
Chairman :prof. RNDr. Radim Chmelík, Ph.D.Vice-chairman :prof. Ing. Radimír Vrba, CSc.Councillor internal :prof. RNDr. Josef Jančář, CSc.prof. RNDr. Tomáš Šikola, CSc.doc. Ing. Miroslav Kolíbal, Ph.D.prof. RNDr. Karel Maca, Dr.Councillor external :prof. RNDr. Ludvík Kunz, CSc., dr. h. c.prof. RNDr. Václav Holý, CSc.prof. RNDr. Jiří Pinkas, Ph.D.
Fields of education
Issued topics of Doctoral Study Program
The goal of the project is a design of LCP and suitable photonic dopants causing local conformational changes in the LCP network resulting in local deformation and preparation of block copolymer/quantum dots nanocomposites, developing suitable deposition technique of these systems into photonic networks on a solid substrate and testing of the light stimulated mechanoadaptability of the model systems.
Tutor: Jančář Josef, prof. RNDr., CSc.
Project will focus on lightweight engineering materials fabricated by hierarchical assembly of building blocks into prescribed local architectures yielding unprecedent combination of stiffness, strength , toughness, impact resistance at low density and novel acoustic properties. Fundamental components investigated will include block copolymers and their nano-composites with controlled nanoparticle spatial organization.
Laser-Induced Breakdown Spectroscopy (LIBS) is a technique providing fast analysis of investigated sample surface. Its performance is oriented on repetition rate and thus enable elemental imaging of large-scale areas. Currently, the LIBS analysis has resolution on the level of hundreds of microns which is not sufficient for high-end applications, especially in biology. The goal of this thesis is to design a LIBS system with high spatial resolution with satisfactory sensitivity in detection of selected analytes.
Tutor: Kaiser Jozef, prof. Ing., Ph.D.
Metasurfaces represent a new kind of promising nanophotonic devices providing new functionalities at their radical miniaturization. Thus, they are perspective for outperforming classical optical elements and devices. They consist of subwavelength nanoelements, either metallic or dielectric, which contribute to forming their overall optical properties by scattering-induced phase modification. Plasmonic metasurfaces, i.e. those based on metallic elements, are generally lagging behind the expectation because of big ohmic losses in their metallic constituents. Therefore, PhD study will be aimed at exploring all-dielectric metasurfaces utilizing Mie resonances [1] and providing novel functionalities concerning modification of optical properties and shaping optical beams. Here, a special attention will be paid to (i) tunable systems with overlapping magnetic and electric dipole resonances which might lead e.g. simultaneously to EIT and enhanced Faraday rotation [2] and other interesting effects. Such tuned systems might act as sensitive sensors to their surroundings, e.g. magnetic molecules, and to (ii) tunable chiro-optical surfaces [3]. The optical properties of metasurfaces and beams shaped by them will be studied by (i) far-field illumination and detection methods. In addition to standard methods like transmission/reflection micro-spectroscopy, we will use an original method of quantitative phase imaging by coherence-controlled holographic microscopy (CCHM) [4] and follow-up Q4GOM microscopy [5]. By this wide-field technique, we introduced into the area of metasurfaces, the phase of radiation scattered/shaped by resonators/metasurfaces can be quantitatively imaged over the whole sample area/beam in-real time with resolution down to a single antenna. Further, (ii) far-field illumination and near-field detection approach will be used using a spectroscopic a-SNOM [6]. References: [1] Dielectric Metamaterials: Fundamental, designs, and applications, ed. by I. Brener et al., Elseviere – Woodhead publishing series, 2020. [2] A. Christophi, …, A. B. Khanikaev, Opt. Lett. 43, 8, 2018. [3] I. Zubritskaya, …, A. Dmitriev, Nano Lett. 18, 302−307, 2018. [4] J. Babocký, V. Křápek, ..., T. Šikola, ACS Photonics 4, 1389, 2017. [5] P. Bouchal, P. Dvořák, F. Ligmajer, M. Hrtoň, V. Křápek, ..., T. Šikola, Nano Lett. 19, 1242, 2019. [6] P. Dvořák, ..., T. Šikola, Nano Lett. 13, 2558, 2013.
Tutor: Šikola Tomáš, prof. RNDr., CSc.
The topic of the dissertation deals with the analysis of a thin dielectric layer on the surface of field emission cathodes operating at room temperature and serving as a source of free electrons for devices requiring high brightness and narrow energy spectrum of the beam. The thin dielectric layer forming the quantum barrier will be characterized using advanced spectral diagnostic methods. The results of these analyses will be correlated with the electrical parameters of the emitted beam under high and ultra-high vacuum conditions. The output of the work should be a significant improvement in the parameters of coated cathodes, which include, in particular, increasing the current stability and extending their life time.
Tutor: Sobola Dinara, doc. Mgr., Ph.D.
The nanostructured surfaces show antibacterial properties. To harness these properties, it is necessary to develop a methodology for large-scale production of nanostructures on objects of various shapes, surfaces of which are far from ideal. Our preliminary data show that the electron beam can be used to grow polymeric nanostructure on surfaces of ceramics. To extend the basic knowledge to applications, it is necessary to describe and understand the role of growth parameters, quality of the substrate, chemistry of employed precursor, etc. In parallel, the properties of fabricated nanostructures should be assessed. The goal of Ph.D. is to grow arrays of nanostructures and assess the role of the growth parameters on their morphology, mechanical, chemical, and antibacterial properties. Our vision is to develop a scalable methodology for nanostructured coatings of implants, which would prevent post-surgery inflammation and facilitate the healing process. (For detailed information, please, directly contact Jan Čechal or David Salamon)
Tutor: Čechal Jan, prof. Ing., Ph.D.
Kelvin's probe force microscopy (KPFM) is an excellent tool for mapping the distribution of surface potential locally up to nanometer resolution. This can be advantageously used in a study of charge distribution on nanometer-sized sensors and at investigation of p-n interfaces of solar cells during their operation. This new information, in addition to commonly studied sensor current responses and solar cell voltage responses, makes it easier to understand the ongoing physical processes, use this knowledge to eliminate the shortcomings of existing devices, and possibly to design higher efficiency devices. At work, you will need to master the general physical principles of KPFM, sensors and solar cells. A suitable applicant is a graduate of a Master's degree in Physics, Electrical Engineering or Chemistry. Aims: 1) Mastering physical principles and measurement of graphene-based sensors and solar cells. 2) Adopting theoretical and practical aspects of KPFM. 3) Mapping the charge distribution close to a graphene sensor and designing more sophisticated sensors. 4) Mapping the potential distribution on the graphene-semiconductor solar cell interface and designing the cell with higher efficiency. 5) Adequate publishing outputs and presentation of results at international conferences.
Tutor: Bartošík Miroslav, doc. Ing., Ph.D.
The inherent problems of the natural enzymes include the poor stability in sever conditions of pH and temprature , low activity, high cost, as well as competitive and non-competitive inhibition which affect the efficiency of the enzyme based biosensors. With emerge of the nanomaterials they have been utilized in a wide range of applications. Due to their features including high surface to volume ratio, high electrical conductivity and possessing catalytic activity they have attracted the attention in biosensors development. Furthermore some types of the nanomaterials possess the catalytic activity similar to the natural enzyme. Nanomaterials which mimic the enzyme like activity could be a potential substitute for their natural analogues. These nanomaterials are thought to be a promising alternatives for the natural enzyme since they are easy to produce, low cost and more stable compared to their natural analogues. Moreover their catalytic activity can be modulated by modifying the synthesis procedure. In this project the nanomaterials which are thought to have the enzyme like activity are synthesized and fully characterized. Their enzyme-like activity toward a given substrate is measured by spectroscopic and amperometric methods. The effect of various parameters such as size, shape, synthesis procedure on their catalytic activity will be investigated. The results obtained in the project will be applied to develope highly stable, sensitive and selective nanobiosensors which can be applied for point of care detection in clinical diagnosis, food quality control and enviromental monitoring.
Tutor: Richtera Lukáš, doc. RNDr., Ph.D.
Superalloys are perspective materials formed with a specific composite microstructure. They are composed of two coherent phases (one of them has a reinforcing effect). The microstructure created in this way is beneficial from many points of view, especially higher strength, high-temperature stability, and intrinsic magnetic properties. The study of these materials has been a hot topic in recent years. However, several physical problems explaining their behavior remain unresolved. One of the most interesting physical issues is the study of intrinsic interfaces and atomic arrangement effect on the mechanical and magnetic properties, which is the topic of this proposed Ph.D. program. The proposed experimental study will be complementary and synergistically linked with theoretical research at the Institute of Physics of Materials of the ASCR, which is focused on the atomic structure and internal defect calculations of advanced materials. Doctorand will study these chosen materials with up-to-date experimental methods. He/she will acquire experience in electron microscopy methods (including high-resolution methods and electron holography). Received experimental data will be used for subsequent studies of these materials.
Tutor: Pizúrová Naděžda, RNDr., Ph.D.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to study adhesion force between nanostructured surface and living cells. The student will set up a system of nanostructured pillars (substrates with those patterns are already available for the student) with desired surface properties. It is expected that the cells will attached to the top of the pillars and due to adhesion forces the cells will deform the pillars’ shapes. The student will capture a real-time video of the structure using either confocal or holographic microscope. The video will be processed by a script in MATLAB environment to create a real-time video of the adhesion force between the cell and the pillars. PhD candidate will work together with Regional Centre for Applied Molecular Oncology (RECAMO).
Tutor: Neužil Pavel, prof. Ing., Dr., DSc.
Carbon dots (CDs) have aroused intense interest because of their photoluminescence and photophysical properties: for example, high photostability, which resemble in some respects those found in semiconductor quantum dots (QDs), and photocatalytic applications. In addition, CDs can be produced easily from a wide range of raw materials and are particularly attractive due to their robust chemical inertness and the many surface carboxylic acid moieties, which provoke excellent water solubility and facilitate their subsequent functionalization with organic, polymeric, inorganic, or biological species. CDs have been proposed as promising substitutes for traditional QDs because they do not require tedious and costly preparation steps and possess high biocompatibility due to the absence of toxic metal ions. Regarding CDs’ preparation, a variety of methods, including acidic oxidation, microwave, ultrasonic, electrochemical oxidation, hydrothermal, supported synthesis, arc discharge, and laser ablation, have been reported. However, unlike other carbon based nanomaterials and despite the interesting features, CDs have not been widely explored as electrode modifiers for the development of electrochemical biosensors. The few applications of CDs in electrochemical biosensing described to date are mainly focused on the electrocatalytic properties of these nanoparticles towards O2 and H2O2 reduction, exploited for the biosensing of glucose or H2O2 and the sensing of dopamine, 2,4,6-trinitrotoluene, patulin, and glucose. In the particular case of electrochemical affinity biosensors, only one example involving the use of CDs as electrode modifiers in the preparation of a DNA sensor to detect single gene mutations has been reported so far. It is worth mentioning that, to our knowledge, the use of CDs as labels in electrochemical biosensors has not been described yet. Thus, this thesis focuses on the further development of carbon dots as an electrode modifier and labels in electrochemical or optical biosensing.
Tutor: Fohlerová Zdenka, doc. Mgr., Ph.D.
Cold sintering of advanced ceramic materials is a hot research direction, demonstrating possibilities to use chemical reagents to decrease sintering temperatures. The new route towards new ceramic materials and composites is open and limitation by temperature stability is removed. Currently, it was demonstrated that the densification mechanism is close to sintering in a liquid phase and similar models can be established. However, the influence of liquid phase composition and reaction kinetics were not explained yet. This Ph.D. thesis aims to an explanation of cold sintering mechanism by application of harsh cold sintering conditions. High temperature and pressure, concentrated solutions will be used during experiments. Compare with usually applied cold sintering conditions, these extreme conditions will help to reveal cold sintering potential and to explain the sintering mechanism. The application potential of the cold sintering is supported by low-temperature processing and the development of new materials. Therefore, the experimental work will take into account new future applications.
Tutor: Salamon David, doc. Ing., Ph.D.
The subject of the PhD study is focused on shaping and consolidation of nanoceramic oxide particles. The main task of the student will contain a study of bulk colloidal ceramics processing using ceramic particles with size below 100 nm via colloidal shaping methods. The research will concern primarily with methods of direct consolidation of ceramic particles. A common difficulty of all these methods lies in the preparation of a stable concentrated suspension of nanoparticles with appropriate viscosity. The solution of the problem assumes understanding and utilization of colloidal chemistry and rheology of ceramic suspensions.
Tutor: Trunec Martin, prof. Ing., Dr.
For maximum information yield about live cells behaviour provided by coherence controlled holographic microscopy it is inevitable to design and develop complex automated bioreactor. Such a device should ensure optically suitable accommodation of live cells in the microscope with provision of control over physiological microenvironment and preprogrammed challenges. The task is to design, develop and validate the complex automated biorector for T1 holographic microscope.
Tutor: Veselý Pavel, MUDr., CSc.
Reduced graphene oxide, carbon nanotubes, and other nanocarbon material evince promising electronic and chemical properties which could be efficiently used in sensors development. Eligible composites of nanocarbon materials with metal nanoparticles and polymer can significantly improve the selectivity and sensitivity of the sensors.
The main aim of the thesis study is to extract and fabricate 3D scaffold structure materials with control physical, chemical and mechanical properties from biopolymers and their application as a new drug and cell. For more details contact the supervisor.
Tutor: Abdellatif Abdelmohsen Moustafa, M.Sc., Ph.D.
The immune system and the skeletal system evolved together in vertebrates. Therefore there is a close and synergic relationship between them. The aim of the project is to study in vitro the crosstalk between immune and bone cells to learn how the physicochemical and structural properties of materials can control such interactions in order to develop new therapies for blood and skeletal diseases. Along the studies, the candidate will have the opportunity to learn and work from the synthesis of the materials to the biological characterization. Highly motivated and collaborative candidates with outstanding track of records and with the ambition to learn from both materials and biological sciences are welcome to submit an application.
Tutor: Montufar Jimenez Edgar Benjamin, M.Sc., Ph.D.
Proposed PhD project is oriented on the synthesis and characterization of magnetically active transition metal and/or lanthanide complexes showing specific magnetic phenomena like spin crossover effect, single molecule magnetism or single chain magnetism. Such coordination compounds exhibit magnetic bi- or multistability and in this sense are very attractive from the application point of view. Possible technological utilization might be in the case of high capacity memory devices, display technologies, spinotronics, contrast agents for magnetic resonance imaging etc. PhD study will be focused on the advanced organic and coordination synthesis of mononuclear and polynuclear complexes of transition metals and/or lanthanides. New-prepared compounds will be characterized by analytical and spectral methods and magnetic properties will be studied by means MPMS SQUID.
Tutor: Neugebauer Petr, doc. Dr. Ing., Ph.D.
X-ray computed tomography (CT) is an important method for 3D non-destructive imaging of samples in many fields. It is commonly used in industry for defect detection and quality control, scientific projects utilise imaging and quantification of data and apply a number of analyses to determine morphological and physical parameters. To put CT data in context with other methods, they often have to be supplemented with established imaging methods such as electron and light microscopy and qualitative techniques such as X-ray spectroscopy. The data from each technique typically have a different format, size, resolution, etc. Combining such different information about samples is a challenge. When correlating two different 3D datasets, it is necessary to ensure that the sample structures correspond to each other. For a combination of 2D and 3D techniques, a corresponding 2D section has to be found in the 3D dataset. This requires a programming approach or a use of special software. The work will deal with techniques of correlation of information from various imaging methods. Such a multidisciplinary approach is in high demand today and has a big potential.
With the ultrasonic loading machine, billions of load cycles can be achieved in a relatively short time. Thus cracks occur even under loads below the conventional fatigue limit. The process of crack formation and propagation in this area will be investigated experimentally and theoretically, among others using ultrasonic loading machine, electron microscopy and interferometric measurements of deformation of the tested sample.
Tutor: Klusák Jan, doc. Ing., Ph.D.
The aim of this thesis is to investigate of secondary metabolism of unicellular algae using genome editing based on Crispr/Cas9 technology. The main goal will be the construction of knockout generation of Chlamydomonas reinhardtii strain in genes involved in biosynthesis of secondary metabolites. Subsequently, use the ambient mass spectrometry under ambient conditions with desorption electrospray ionization (DESI) and direct analysis in real time (DART) to study metabolome in the obtained strains.
Tutor: Adam Vojtěch, prof. RNDr., Ph.D.
Additive manufacturing (AM), familiarly called also 3D printing, of metallic materials represents undoubtedly a revolution in production technology and presently very intensively studied research topic. Among the metallic AM techniques the most common and frequently utilized technology is selective laser melting (SLM) consisting in melting the metal powder using a laser beam. The SLM technology enables direct manufacturing of 3D complex shape parts and internal architecture from numerous powder metallic materials (especially Ti- and Al-alloys, stainless steels and nickel-based superalloys). This technology is generally characterized by high temperature gradients and solidification rates that have a significant impact on the non-equilibrium microstructures and properties of final parts which may considerably deviate from their wrought counterparts. At present, austenitic stainless 316L steel represents one of the most intensively studied SLMed material. Since this steel is considered for utilization in demanding and highly regulated sectors as nuclear and biomedical industry it is of object of numerous studies including mechanical behavior during monotonic and cyclic loading, corrosion behavior, radiation damage etc. for more info, please, contact us.
Tutor: Man Jiří, Ing., Ph.D.
Engineering and production of novel materials, including coatings and layers, is demanding new analytical solutions. Compared to other analytical techniques, Laser-Induced Breakdown Spectroscopy (LIBS) enables selective ablation of layers with variable depth resolution. However, the depth of the analysis with certain number of laser pulses differs for individual materials. The calibration of depth to laser pulse number is also of an issue, while there is no solid evidence for this phenomenon in classical LIBS literature. The goal of this thesis is to find complementary approaches, for instance using Computed Tomography and standard approaches of metallography, in depth profiling in order to fully calibrate LIBS technique to depth profile analysis. As an output, methodological protocol applicable across broad range of materials is demanded.
Design and building of prototype of portable devices usable for diagnostics in the place of sampling or point of care (Point of Care testing) is topical not only today with regards to the SARS-CoV-2 pandemic. Higher rate of testing in the public sector bring the costs but on the other side is rapidly decreasing the economical loses. This work is aimed on designing a low-cost device with prototyping by 3-D printing, fluidic management etc. The device will be based on processing the magnetic field assisted isolation of biomolecules (biomarkers) using the magnetic particles (MPs) and detection part using precise chemiluminiscence immuno assay (CLIA). The application focus of the prototype in the early stage of TRL (technology readiness level) will be in the respiratory infection markers.
Tutor: Zítka Ondřej, doc. RNDr., Ph.D.
Diagnostic devices enabling fast and simple detection of undesired of pathological state of the organism using no or minimal instrumentation, or appliances of everyday use (cell phone, office scanner, etc.) represent new direction of bioanalytical chemistry with wide social impact. In this work, a device for detection of selected key biomarkers will be designed, manufactured, optimized, and applied. Main attention will be paid to exploitation of simple and easily available approaches (waxprinting, molecular imprinting, etc.) in connection to visual detection of change of colour or fluorescent signal. Detection by naked eye or by cell phone enables the application in hospitals right at the patient’s bed or even in people’s homes.
Tutor: Vaculovičová Markéta, doc. Mgr., Ph.D.
Plastic materials are intensively polluting our environment. They are getting into the food chain and influencing individual bio-organisms in the form of microplastics. Their toxicity and impact on living organisms, thus, must be assessed. The topic of this thesis is to find an integrative approach to study the fate and effects of emerging microplastics in the aquatic environment. Main goal is to find methodology for analysis of microplastics accumulated in aquatic organisms in order to understand adverse outcomes.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to perform theoretical study, design, fabrication and characterization of nanosheet sensors made by an advanced planar technology in combination with pulse method, such as lock-in amplification. Goal of this work is to study, characterize and optimize an array of sensors made from ultrathin single crystal silicon (chips have been fabricated and they are available). This silicon device with thickness of 10.5 nm can be used as resistive sensor connected as van den Pauw device or as Hall sensor to detect intensity of magnetic field. Change of charge at its surface will modulate its conductivity or magnetic particle its properties as Hall sensor. The device will be powered by a current pulses and the output will be process by a lock-in amplifier. PhD candidate will identify the system signal noise ratio and limit of detection (LOD) of the biosubstances of interest. He/she will also design and fabricate a simple microfluidic system to confine the tested sample at suitable location at the chip. There is also required to optimize the buffer solutions not to affect the measurement. PhD candidate will analyze the type of silane crosslinkers and their utilization using chemical vapor deposition technique. Basic properties will be conducted using albumin. Next the PhD candidate will perform specific reaction antibody - antigen of one biomarker and determines its LOD. PhD candidate will work together either with Regional Centre for Applied Molecular Oncology (RECAMO) as they have cancer’s biomarkers or with partner group at Mendel University. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.
Cutting is an important process in the manufacturing industry. It is a process of machining of a workpiece, where a cutting tool is used to remove some material from a workpiece by means of shear deformation to produce a certain design. Cutting tool can be single point cutting tool, such as a turning tool, shaping tool and planer tool, or multiple point cutting tool such as milling cutter. Various types of materials can be used to make cutting tools in the industry today so long as they meet the characteristics for making cutting tools. These include high speed steel, diamond, or cemented tungsten carbide among others. This study focuses on the development, characterization, and evaluation of optimally engineered nanocomposite PVD coatings. The following necessary specific objectives need to be accomplished: 1. Development of different types of nanocomposite PVD coatings based on their composition of the constituent materials and coating thickness. 2. Characterization of the developed nanocomposite PVD coatings. 3. Study of performance based on associated various micro-mechanical characteristics such as hardness.
The introduction of pulse techniques to the nuclear magnetic resonance (NMR) spectroscopy had dramatically enhanced its sensitivity, which, in turn, had changed its application landscape. For example, it gave birth to the magnetic resonance imaging (MRI) — a revolutionary and (nowadays) indispensable tool in medical diagnosis and staging of disease. The further increase in sensitivity will improve the resolution and recording time of MRI scans, making it cheaper and more accessible. The most promising path in this direction is the so-called dynamic nuclear polarization (DNP) enhanced NMR. In this method, the much higher polarization of the electron’s spin is transferred to the nuclear spin via hyperpolarization processes. This technique has already proven its usefulness demonstrating the hundreds of times improvement of the sensitivity. The main goal of the project is to increase further the efficiency of DNP-NMR, and it consists of two parts. Firstly, we will couple the existing 500 MHz NMR console with our 16 T superconductive magnet in order to be able to run solid-state NMR. For this goal, the PhD student will design and develop the DNP-NMR probe for solid-state samples. The second part is devoted to experiments on the DNP enhanced NMR and improving the efficiency of hyperpolarization processes.
Materials that can accumulate and transform mechanical and sunlight energy to chemical energy can be advantageously utilized for removal of chemical and biological pollutants. The work will be focused on the development and study of materials for the effective removal of dangerous pollutants using piezocatalytic and photocatalytic approaches. The student will develop methods for the preparation of ceramic and hybrid structures in the form of particles, fibres, layers, and bulk bodies and she/he will perform their evaluation in terms of efficiency and usability in the intended applications.
Pulsed Electron Paramagnetic Resonance (EPR) methods are intensively used to investigated structure and dynamics of complex macromolecules containing unpaired electrons. Among these methods Pulsed Electron-Electron Double Resonance (PELDOR) also known as Double Electron-Electron Resonance (DEER) has emerged as a powerful technique to determine relative orientation and distance between macromolecular structural units on nanometre scale. For successful applications of pulsed EPR methods it is important to have tools enabling transformation of measured signals into structural information. The goal of this PhD project is to develop new effective computational procedures and computer programs for the processing of measured pulsed EPR data in order to extract structural and dynamical information from experiments. This goal also includes application of the developed computational methods to real experimental data obtained on the molecules tagged with spin labels. For more details please contact Petr Neugebauer.
Mass spectrometry is one of the key methods for identification and structural elucidation of new biomarkers. The aim of the proposed project is to develop new complex approaches combing complementary techniques based on chromatographic separation followed by diverse mass spectrometric detection techniques. The broad platform applying gas chromatography for volatile biomarkers identification (GC-MS, GCxGC-MS), together with the imaging methods for lipids and proteins detection (DESI-MS, MALDI-MSI) and conventional HPLC-MS analyses will allow for a complex characterisation of novel compounds, that will be further applied in clinical praxes for timely diagnostics of pathological processes such as immunologic dysfunctions, carcinogenesis or neurodegenerative diseases. The planned output of the project is the construction of a sampling device that will capture biomarkers from the breath directly at the patient's bedside and will provide online information regarding the patient health conditions to medical staff.
Recently, energy harvesting based on piezoelectric ceramics has attracted wide attention as an electric energy source for low-power electronics. Due to environmental aspects the commonly available piezoceramic generators based on PZT (Pb-Zr-Ti-O) must be replaced by lead-free materials. BCZT (Ba-Ca-Zr-Ti-O) a BT (BiFeO3) are very promising lead-free piezoelectric ceramic materials for this application. The work will be, therefore, focused on the development and study of these unleaded materials and their controlled doping for the purpose of efficient electric energy harvesting. The student will develop processes for preparation of piezoceramic and composite piezoceramic tapes for application in energy harvesters. The efficiency of the new materials in the energy harvesting will be evaluated. Internship at the University of Oulu is planned during the study.
Due to its biocompatibility, high mobility of charge carriers and ultra-sensitivity of electronic properties to the presence of individual adsorbed and substituted atoms and molecules, graphene is a suitable material for utilization in the area of sensors and biosensors. Density functional theory (DFT) allows first-principle determination of the adsorbents and substitutes influence on the electronic properties of graphene and other 2D materials, which are key for understanding the physical nature of these devices operation. The subject of this doctoral thesis is the study of this issue using DFT calculations in a broader theoretical context, as well as computational support for experiments performed within the group. Therefore, the person with strong theoretical background in quantum mechanics, solid state physics, and practical knowledge of DFT calculation and data processing is expected.
Nowadays limitations of electro-mobility, intelligent electrical networks, and pulse power systems are fast energy storage and release. The dielectric capacitors allow fast charging and discharging compared to lithium-ion batteries, moreover, these materials have a higher cyclic life. The ceramic-ceramic or ceramic-polymer composites seem to be the ideal candidates. This Ph.D. study aims to increase the energy density characteristics through modulation of the nanostructure in 3D (the formation of a texture) what is necessary for the mobile applications of these dielectric capacitors of a new generation. The innovative processing techniques such as Spark Plasma Sintering and Freeze-casting will be applied to achieve tailored microstructures of the investigated materials.
The amount of data obtained in one experiment is steadily increasing. Contemporary state-of-the-art Laser-Induced Breakdown Spectroscopy system provide bulky data sets with millions of objects (spectra) and thousands of variables (wavelengths). Thus, there is a must driven by more efficient data storage, handling and processing; this might be tackled by lowering the dimension of raw data sets. This demands to truncate the information and omit redundancy and noise. In this work, advanced mathematical algorithms will be investigated, with special attention to non-linear algorithms. The main parameter is robustness of the algorithm. Outcomes of this thesis will be directly applied to data processing in various applications, including the multivariate mapping of sample surface.
This PhD research topic explores Direct Ink Writing method, also known as robocoasting, for in vitro fabrication of tissue-like-constructs with potential application as i) tissue or organ substitutes in tissue engineering and regenerative medicine approaches or ii) development of models for in vitro testing of drugs and new therapies. Direct ink writing is an additive manufacturing method able to produce polymeric, ceramic or metallic shapes, besides, it offer the possibility to use cell-loaded materials to fabricate directly cell-containing constructs. Along the studies, the candidate will have the opportunity to learn and work from the synthesis of the materials for manufacturing, to the biological characterization of the manufactured constructs. Principal attention will devote to fabrication of bone-like tissues, but according with the results, other tissues such as pancreas, muscle or neuronal will be addressed. Highly motivated and collaborative candidates with outstanding track of records and with the ambition to learn from both materials and biological sciences are welcome to submit an application.
Despite of evident significance of entropy in various phenomena of materials science, this quantity is neglected in their quantification in majority of cases. This negligence results in inaccurate quantitative values and – in the case of generalization – in incorrect prediction and interpretation of the effects. The aim of this work is to demonstrate the role of the entropy for an important example of solute segregation at grain boundaries of bcc iron. Practical methods of theoretical determination of the entropy of segregation will be developed and the data calculated for selected solutes will be compared to experimental values in literature. The calculated data will be then tested using known phenomena, such as the anisotropy of the grain boundary segregation and enthalpy–entropy compensation effect.
Tutor: Černý Miroslav, prof. Mgr., Ph.D.
The metal ions Cu, Zn and Fe ions are proposed to be implicated in two key steps of peptide pathology: 1) aggregation of the peptide and 2) production of reactive oxygen species (ROS) induced by peptide in plant. In this context, the understanding of how these metal ions interact with peptides, their influence on structure and oligomerization become an important issue for peptide application. The requirement for pharmaceutical systems with reduced side-effects calls for the development of more advanced biomaterials with multifunctionality, increased biocompatibility and minimum toxicity. Peptides are usually inherently less toxic than conventional material used in plant treatment. Peptides generally affect only the target pest and closely related organisms, in contrast to broad spectrum, conventional pesticides that may affect organisms as different as birds, insects and mammals. On the other hand, biopeptides often are effective in very small quantities and decompose quickly, resulting in lower exposures and largely avoiding the pollution problems of soil and water caused by conventional pesticides. The peptides are expected to be that biocompatible material because of the nature of their components. However, metal ions inherit the multifunctional properties of peptides which have a pH tunable surface charge (charge patch) and a distribution of hydrophobic units (hydrophobicity patch) directly change the toxicity nature of peptide. Moreover, the mechanism of ROS production by metal-peptide complexes is in relation to its aggregations state, as well as the metal-transfer reaction from and to peptides are crucial in order to understand if peptides oligomers are highly toxic to the soil and plants and why peptides seems to bind Fe, Cu and Zn.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to perform theoretical study, design, fabrication and characterization of gold electrochemical sensors (EC) made by planar technology in combination with pulse electrochemical method, such as lock-in amplification. PhD candidate will perform detail analysis of electrode behavior and optimize their geometry. Besides that the student will design and fabricate a microfluidic system, which will allow to define the flow of liquid between individual electrochemical sensors. The lock-in amplification technique allows concurrently interrogate a few sensors. Basic characteristic will be perform using model Fe2+/Fe3+ system and compare with standard cyclic voltammetry. PhD candidate will then perform specific reaction antibody/antigen at the gold surface after the surface is treated with a thiol cross linker that there will be different antibody at each EC cell. PhD candidate will work together either with Regional Centre for Applied Molecular Oncology (RECAMO) or with partner group at Mendel University. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.
Aim of this work is theoretical study, deposition and characterization nanostructured materials such as Au, Ag and their amalgams. Student is expected to optimize their deposition technique and characterize their properties, such as surface area and composition. Then the student will fabricate biosensing chip based on an array of those nanostructured materials and again perform their fundamental characterization using electrochemical, optical and electrical methods. Then the array of nanostructure electrodes in a microfluidic system will be used to perform an early cancer detection based on diagnosis of circulation cancer DNA. The chip fabrication, characterization will be conducted at CEITEC in collaboration with hospital laboratories, such as RECAMO.
Ultra Fast TEM (U-TEM) allows to monitor dynamic phenomena such as phase changes, melting/crystallization of materials with time resolution in ns to ps. Furthermore, samples sensitive to electron beam exposure can be observed using stroboscopic illumination (another U-TEM mode). Current U-TEM microscopes use photoemission sources or a combination of standard sources with very fast deflectors (RF cavity,…). Nanostructured materials appear to be very promising for the production of U-TEM electron sources. For example, GaN materials are seems to be good candidate for this purpose due to their considerable chemical and thermal resistence, low switching voltage of 1.25 V/um and high current density. The properties of the cathode depend to a large extent on the shape and form of nanostructures such as nanotubes, nanocarbons and nanocrystals.
Tutor: Zlámal Jakub, Ing., Ph.D.
The dissertation will deal with the development of electron tweezers, which allows to move droplets of eutectic liquids on the surface of semiconductors. The electron tweezers utilize the focused electron beam and is already tested in the UHV-SEM microscope, developed in cooperation with TESCAN company. During the controlled movement, the gold-containing droplet can for example etch or otherwise modify the surface of semiconductors (germanium, silicon). The dissertation thesis should focus on the interaction of different eutectic droplets with various substrates including 2D materials (graphene, etc.). Part of this work will be optimization of this process including its real-time monitoring using UHV-SEM microscope.
Tutor: Průša Stanislav, doc. Ing., Ph.D.
The main objective of the study will be fabrication and characterization of electrospun ceramic based fibers for electric and electrochemical applications.
Tutor: Částková Klára, doc. Ing., Ph.D.
The Ph.D. work will be concerned with the fabrication of nanofibers dressing mats based on bionancomposite materials (hyaluronan, chitin/chitosan fibril, etc) by electrospinning technique. The main target will investigate the optimum conditions for synthesis nanocomposite with different bioactive nanoparticles and fabrication nanofibers dressing mats from it. The selected nanocomposite dressing mats will be testes and apply as a new wound dressing for cutaneous wound healing. For more details please contact the supervisor.
Composite materials exhibit outstanding properties thanks to suitable junction of two different materials. However, sharp materials interface can lead to degradation of the properties. Conditions of crack initiation in places of sharp shape and materials changes will be determined and evaluated using the procedures of generalized fracture mechanics.
Aerogels are materials with controllable micro- or nano-sized pores and a high porosity, large specific surface area, and low density. Biopolymers (chitin, chitosan, cellulose) based aerogels will be fabricated by different techniques like supercritical drying or freeze dryer process. The main aim of the dissertation will be preparation, modification, characterization of functional aerogels based on different biopolymers and their derivatives for skin and bone regenerations.
Aerogels are a unique class of highly porous, solid materials that are characterized by network-like, mesoporous, open-pore microstructure and have a complex of exceptional characteristics, such as extremely high surface area, low density, high catalytic activity, negligible heat conductivity, etc. A promising research area is the surface functionalization of aerogels and other related highly porous architectures (xerogels, ambigels) with catalytically active species. This will allow to use these materials for a wide range of environmental applications, such as catalysts for the treatment of air and water pollutants. The present work aims at the exploration of new possibilities for the development of improved environmental catalysts based on modified single-phase and multicomponent aerogels. Synthesis methods to be used will allow to employ various oxide systems for building aerogel templates (based on perovskite, pyrochlore, zirconia, titania, etc.), while several other techniques (sol-gel synthesis, nanoparticle introduction, etc.) will be applied to modify the obtained templates to prepare catalytic systems, which will be used for air and water pollutant capturing and decomposition.
Tutor: Tkachenko Serhii, Ph.D.
The PhD project will concentrate on a study of complex issues related to development of UV detectors using GaN (Ga)/graphene nanostructures. The initial part of the study will focuses on the preparation of Ga and GaN nanostructures on poly-and single-crystal graphene using a low-temperature deposition method. The low temperature growth of GaN nanocrystals will be carried out by a combination of UHV PVD technologies such as Ga vapour deposition and low energy nitrogen ion-beam (50 eV) post-nitridation using a unique ion-atomic beam source [1] . The growth of GaN will be realized at much lower temperatures (T<250°C) than in conventional technologies (e.g. MOCVD, 1000°C). Subsequently, the relation between parameters/functional properties of Ga and GaN nanostructures and deposition conditions will be studied. The complex characterization of the Ga (GaN)/graphene nanostructures will be provided by Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (AFM, EFM, SKFM), Raman spectroscopy, photoluminescence micro-spectroscopy, etc. Finally, the electrical response of the nanostructures to UV radiation will be studied via a FET-setup utilizing these optimized nanostructures as photosensitive elements. References: [1] J. Mach, P. Procházka, M. Bartošík, D. Nezval, J. Piastek, J. Hulva, V. Švarc, M. Konečný, and T. Šikola, Nanotechnology, Vol. 28, N. 41 (2017).
Monitoring of chemicals such as gases and vapors using portable instruments is essential in different areas. For instance in environmental surveillance, in which it is needed an accurate control of greenhouse gases (e.g., CO2, CH4 and N2O) and large number of sensing systems to provide ubiquity. Nanomaterial-based gas sensors are attractive over other portable gas sensing instruments in environmental surveillance (including microfabricated designs of ‘classic’ analytical instruments as gas chromatography, mass spectroscopy or ion mobility spectrometers) due to their relatively simple architecture that allows for high levels of integration, miniaturization and in turn low cost production. At present, the major concerns in nanomaterial-based gas sensors are focused on ‘typical’ operational parameters such sensitivity, selectivity and stability, as well as on their power consumption which is generally associated to the need of thermal activation at temperatures above 200 °C. The use of conducting polymers or carbon-based materials can solve in part these issues providing sensitivity to specific gaseous analytes near room temperature (i.e. with less power consumption). However their reversibility and stability are not as good as that of traditionally gas sensitive materials based on semiconducting metal oxides. Hence the need of engineering further gas sensitive materials, including semiconducting metal oxides and/or modified (composites/hybrid) structures by combining inorganic and organic materials to achieve chemical, electronic, and optical sensitization and stability at room temperature. Hence, this thesis will aim at tuning the chemical, electronic, and optical properties of nanomaterials synthetized via liquid- or vapor-phase chemical routes (e.g., hydrothermal synthesis and chemical vapor deposition) to achieve gas sensitivity at room temperature. The specific tasks will focus on: 1. Synthesis of gas sensitive nanomaterials based on rare-earth doped metal oxides 2. Synthesis of hybrid/composite (inorganic and organic) gas sensitive materials 3. Material analysis and gas sensing characterization to greenhouse gases. The work will include active collaboration with other research groups particularly at the Institute of Microelectronics of Barcelona (Spain). With this project, the student will acquire knowledge on synthesis of materials, gas sensors, and chemical/electrical/optical characterization techniques.
Tutor: Vallejos Vargas Stella, Dr.
Spin waves in the THz region have become a subject of growing interest due to a high group velocity of magnons (steep dispersion curve) which renders them attractive for the design of ultrafast spintronic devices [1]. Here, antiferromagnetic materials like rare earth orthoferrites (RFeO3) could be a solution because of their very high (terahertz) frequencies of spin resonances [2], [3]. However, due to the lack of efficient sources and detectors, the physics of magnons at THz frequencies is far less studied. The proposed interdisciplinary PhD study combining photonics and magnetism is based on generation and detection of THz spin waves by near fields enhanced by plasmonic resonant structures - antennas. It brings a new qualitative view into this subject. The antennas will be fabricated on a substrate surface, ideally on ribbons or magnonic crystals made out of RFeO3 thin film samples (e.g. TmFeO3) by EBL/FIB at CEITEC. Then, the magnons propagating along these structures will be analysed by a Brillouin light scattering (BLS) micro-spectrophotometer [4], using the method reported in [5] and successfully implemented at CEITEC [6]. Further, to extend the detected Brillouin-zone range, plasmonic resonant nanostructures providing large momentum components in their near-field hot spots will be used as well [7]. In this PhD study, plasmonic resonant structures for generation and detection of magnons should be optimized, and then dispersion relations tuned by shape, dimensions and periodicity of ribbons/magnonic crystals [6] and external magnetic field. Supportively, magnetic near-field enhanced THz T-D spectroscopy might be applied to test magnon-polariton dispersion curves of the thin film samples according to [3]. References: [44] K. Zakeri, PHYSICA C 549, 164, 2018. [45] J. Guo, J. Phys.: Condens. Matter 32, 185401, 2020. [41] K. Grishunin, ACS Photonics 5, 1375, 2018. [46] T. Sebastian, …, H. Schultheiss, Front. Phys. 3, 35, 2015. [47] K. Vogt, …, B. Hillebrands, Appl. Phys. Lett. 95, 182508, 2009. [38] L. Flajšman, …, M. Urbánek, Phys. Rev. B 101, 014436, 2020. [X] R. Freeman,,…., Phys. Rev. Research 2, 033427 (2020).
The recent research direction in the field of ballistic protection is a reduction of weight simultaneously with increasing demand for its ballistic resistance. Therefore, oxide ceramic materials are gradually replaced by non-oxide ceramic materials in personal ballistic protection, and lightweight composites are designed for ballistic protection of vehicles. The aim of this Ph.D. topic is the research of chemical reactions in ceramic-metal composites, which can increase energy absorption during the impact of a projectile. High entropy ceramic composites will be prepared as materials with a high potential to absorb kinetic energy. The fundamental research of reaction kinetics will be carried out on materials with a high probability of applications. The Spark Plasma Sintering method will be used to prepare novel composites, the properties of which will be further mechanically tested to optimize the parameters of their processing.
Properties of multifunctional magnetic materials are closely linked to the subtle interplay of different order parameters. In this context, Transmission Electron Microscopy (TEM) is a unique technique to investigate the link between structure, chemical composition, and magnetism on a sub-nanometer scale. The thesis aims at exploring this relation in static conditions and under the action of external stimuli such as electric fields and currents. The project assumes previous practical experience with TEM imaging.
Tutor: Uhlíř Vojtěch, Ing., Ph.D.
Hydrogen is a very prospective and eco-friendly fuel which can bring significant economical and environmental benefits. The main obstacle that impedes expected future of hydrogen technology is safe and acceptably efficient hydrogen storage (HS). It is generally accepted that a possible solution to this problem is HS in solid phase of metallic materials (HSM). However, there are not HSMs up to now with sufficient HS properties at low temperature and pressure. Therefore, the main idea of this study is to investigate HS properties of new perspective model alloys which could show effective HS at temperatures near to room temperature and at low pressure. One of ways how to influence HS properties HSM is to change their phase and chemical composition. The results could lead to new strategies in development of HSM.
Tutor: Král Lubomír, Ing., Ph.D.
Hydrogen is a very prospective and eco-friendly fuel which can bring significant economical and environmental benefits. The main obstacle that impedes expected future of hydrogen technology is safe and efficient hydrogen storage (HS). It is generally accepted that a possible solution to this problem is HS in solid phase of metallic materials (HSM). However, there are not HSMs with sufficient HS properties at low temperature and pressure. Therefore, decreasing the thermodynamic stability of hydride phase of HSM with high hydrogen capacity is crucial for tuning their HS properties. One of ways how to influence thermodynamic properties is changing of structure states and chemical composition of HSM. The main idea of this study is to investigate the HS properties of model Mg-alloys in various states of structure from critically cooled or amorphous state to ordered crystallized structure. These materials could show desired HS properties at lower temperatures and pressures. The results could indicate new ways for development of new HSM.
The Low Energy Ion Scattering (LEIS) has proved its capability to study composition of the solid state surfaces. It is a low energy modification of the famous experiment of Rutherford with scattering of alpha particles on gold foil. The extreme surface sensitivity of the technique is widely used in analysis of the elemental composition of a topmost atomic layer with nanometre depth resolution. The sensitivity of the methods originates mainly from charge exchange mechanisms between the projectile and involved surface atoms. Only a small fraction of the scattered projectiles leave the surface in ionized state. This ion fraction is represented by characteristic velocity that is the measure of the charge exchange processes and is characteristic to the given combination of projectile and surface atom. The characteristic velocity is frequently influenced by chemical arrangement of the sample surface as well. This project aims to the characterisation of the charge exchange processes between the He and Ne ions (projectiles) on variety of solid state surface and thin layers. The primary kinetic energies of the projectiles will be varied within the range between 0.5 keV to 7.0 keV. Outputs of the project will significantly improve the potential of the LEIS technique at the field of quantitative analysis. The experiments will be performed on dedicated high sensitivity LEIS instrument – Qtac100 (ION TOF GmbH). See for example: Highly Sensitive Detection of Surface and Intercalated Impurities in Graphene by LEIS. (By S. Prusa and H.H. Brongersma).
Nanoparticles and nanoparticle systems have a unique position among nanomaterials. They have many important applications in technologies, biology, and medicine, and a huge potential for future developments. The physical and chemical properties of nanoparticles (nanometric volumes of materials) are fundamentally influenced by their morphology. Decreasing the particle size enlarges the surface-to-volume ratio, which can be utilized in chemical reactions (chemical catalysis), and to tune physical properties of these materials (quantum dots, superparamagnetic and magnetic nanoparticles). The topic of this dissertation is the structural and phase characterizations of nanoparticles and their aggregates using electron microscopy. The experimental results will help to unravel the relationship between their properties and structure, and will be used to optimize their synthesis method and functionalization.
Aerogels are materials with controllable micro- or nano-sized pores and a high porosity, large specific surface area, and low density. Biopolymers (chitin, chitosan, cellulose) based aerogels will be fabricated by different techniques like supercritical drying or freeze dryer process. The main aim of the dissertation will be preparation, modification, characterization of functional aerogels based on different biopolymers and their derivatives for wastewater treatments.
High permittivity materials are needed for new applications, eg. in the next generation integrated circuits or in capacitors. In the manufacture of capacitors, materials with high permittivity are desirable to achieve a higher density of energy in the capacitor and hence to diminish the dimensions. Nowadays, pure BaTiO3 material is used for commercial ceramic capacitors. By doping the permittivity of this material can be increased up to 10 times. The aim is to find options for BaTiO3 to increase the permittivity in the form of doping or material modification. Internship at the University of Oulu is planned.
Tutor: Sedláková Vlasta, doc. Ing., Ph.D.
Aluminum films with various additives and with thickness of 20 – 100 nm will undergo heat treatments to optimize the grain size and stabilize the grain boundaries. The toughness of the samples will be tested by deformation at temperatures up to 400°C and their micro-structure will be studied using transmission electron microscopy. The obtained results will be simulated using molecular dynamics.
Tutor: Fikar Jan, Mgr., Ph.D.
This thesis will focus on the assessment of the effects of surface treatment by the LSP method on various types of alloys. Laser shock peening (LSP) cures the surface using a pulsed laser beam, which generates a strong compression shock wave upon impact with the surface of the material. The shock wave propagates through the material and creates compressive residual stresses on the surface of the material. This increases the resistance of the material to certain defects or increases the hardness of the surface layer. Various microscopic methods, X-ray diffraction and other methods will be used to characterize the material.
Tutor: Friák Martin, Mgr., Ph.D.
The observation of 2D materials growth at nanoscale is a challenging task. In our group, we have a large expertise in real time electron microscopy and we operate beyond-state-of-the-art instrumentation (LEEM, FTIR in UHV and SEM for observations in extreme conditions). The aim of this PhD dissertation is to revealing the growth modes of 2D materials (transitiv metal dichalcogenides, group-IV-based 2D materials etc.) and thein properties by advanced microscopy and spectroscopy in UHV as well as under high pressure and at high temperature.
Tutor: Kolíbal Miroslav, doc. Ing., Ph.D.
Plasmonic waveguides were demonstrated to be an ideal component of monolithic infrared sensing platforms. While at present, they are commonly used for the confinement and guidance of optical modes, they offer a lot of potential to make a transition from purely passive to functional components of optical systems. The candidate should investigate the fabrication of metal-dielctric stacks for sensing applications at near- and mid-infrared wavelengths by UHV sputtering processes. Experimental work will include the optimization of the deposition processes, as well as lithographic structuring and device characterization. Previous experience with relevant equipment within the CEITEC Nano Facilities (UHV sputtering, lithography, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on novel materials for sensing applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.
Tutor: Detz Hermann, Dr.techn. Ing.
Direct magnetic coupling, such as the exchange bias, occurs at the interface of antiferromagnetic (AF) and ferromagnetic (FM) orders, which is commonly accomplished using a combination of AF and FM thin films. The character of the resulting interaction is strongly dependent on the specific magnetic texture of the films involved. The aim of the thesis is to elucidate the physical nature of exchange bias and use this interaction to control nanoscale AF configurations in different model systems.
There is growing interest in understanding magnetism of materials combined with 2-dimensional materials such as graphene. In particular, the impact of magnetic materials intercalated between the 2D material and its supporting substrate has the potential for magnetic ordering and may lead to modification/control of magnetic properties. Additionally, a system of magnetic material + 2D material could potentially be monolithically integrated with other devices to create new, robust electronic functionalities. The objective of this project it to develop and carry out strategies of intercalating magnetic atoms and molecules using graphene or other 2D materials. The subsequent structures would then be characterized by a wide range of surface probes as well as high field and frequency electron spin spectroscopy and nuclear magnetic resonance techniques. The knowledge gained will then be used to develop predictive models of magnetism for the intercalant + 2D material/substrate. This work will be carried out in collaboration with the US Naval Research Laboratory and will have opportunities for on-site research.
The PhD candidate will develop fast, user-friendly, and affordable Internet of Things (IoT) system based on existing miniaturized polymerase chain reaction (PCR) device. The student will first identify the system structure, method of communication and result registration via internet. Then the student will develop a system to amplify RNA either from dengue fever or another virus based on existing portable PCR hardware. The resulting data will then automatically upload via a suitable interface to an Android-based smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. Then a software interpreting the result will be developed to shown the RNA spreading on a map with suitable statistics. Then existing PCR will be used to detect RNA using RT-PCR reaction with addition of a simple sample preparation to demonstrate the entire system capability using field testing.
Magnetism emerges in matter due to the presence of unpaired electronic spins and the interaction between them in a wide range of materials from oxides to molecular materials. The collective behavior of spins, also known as quantum entanglement of spins, is a very active area of research with application to communication and computation. Electron spin resonance (ESR) is a key technique that enables to investigate spin states and spin-spin interactions. It has been successfully applied to monomeric and dimeric spin systems for identifying quantum transitions between entangled phases by varying parameters such as the temperature or the orientation of an external applied magnetic field. The aim of this project is to identify suitable materials such as spin dimers of molecular nature and apply ESR spectroscopy to study quantum phase transitions in the high frequency (up to 1 THz) and high field (up to 16 T) regime.
Laser ablation of matter is an essential process involved in the chemical analysis using various techniques of analytical chemistry. The spectroscopic investigation of characteristic plasma emission provides qualitative and quantitative information about the sample of interest. Standard analysis is based on the processing of emission signal; the process of laser ablation and consecutive development of laser-induced plasma is marginal and of little analytical interest. But, understanding the complexity of laser-matter interaction is a crucial step in the improvement of the latter data processing approaches. Thus, this work will target the investigation of spatial and temporal development of laser-induced plasmas, imaging of plasma plumes and determination of their thermodynamic properties. Outcomes of this work will be used in further advancement of the ablation of various materials (incl. biological tissues), improvement of optomechanical instrumentation (collection optics) and optimization of signal standardization.
Self-assembly is a promising route to fabricate nanostructures with atomic precision. The targeted design of molecular precursors allows programming nanostructures with desired functional properties. Implementing molecular nanostructures into functional devices requires understanding the kinetics of the growth as it defines the fabrication procedures. However, only little is known about the kinetics of the growth/transformation processes near the thermodynamic limit. The goal of Ph.D. study is to study the growth kinetics and phase transformation in self-assembled molecular systems and formulate a suitable model describing the surface processes. The Ph. D. study's experimental research within the Ph.D. study aims to understand the kinetics deposition/self-assembly phenomena of organic molecular compounds on metallic surfaces. Low-Energy Electron Microscopy presents an ideal technique for monitoring the real-time evolution of surface growth in both real and reciprocal space. These data will be complemented with a chemical composition by X-ray photoelectron spectroscopy and atomic-level structure by scanning tunneling microscopy available within the UHV system. (For detailed information, please, directly contact Jan Čechal)
Plastic recycling and production is currently at its climax, current legislative is forcing faster processing of material while avoiding toxic metal content. Plastic industry is looking for solution in analytical chemistry, with high throughput and satisfactory analytical performance. Laser-induced breakdown spectroscopy (LIBS) technique is being intensively applied in various industrial applications. Its robustness and instrumental simplicity drive its direct implementation into production processes and even to production lines. The goal of this thesis is design of LiBS instrumentation, methodological protocol for classification of individual plastic materials and detection of toxic metals using LIBS spectra.
Laser-Induced Breakdown Spectroscopy (LIBS) is getting established in various industrial applications. This method excels for its instrumental simplicity and robustness and is thus a potential alternative for existing techniques. When considering LIBS as an analytical tool, it is necessary to evaluate its analytical performance and the level of implementation into the existing production line. The topic of this thesis is the identification of individual industrial applications and the development and adaptation of analytical apparatus together with the optimization of measurement methodology from sample pretreatment to data processing.
The current laboratory computed tomography systems are equipped by X-ray tubes as a source of X-rays. Among other possibilities how to generate X-rays belongs a linear accelerator which greatly increases the velocity of electrons and produce high energy of X-ray radiation. These devices are moving from medical to industrial usage and new systems are developed at the moment. This system are used for penetrating very thick and/or high absorbing samples. With the development of this technology new research topics dealing with the implementation in material research and big data processing are opening.
Single molecular magnets (SMM) are molecular entities bearing nonzero magnetic moment. In addition to the magnetic properties SMM provide one important attribute: they represent two-state system that can be in superposition state, i.e., SMM represent quantum bits (qubits). Recent developments pushed the coherence properties of individual magnets to the range required for competitive qubits. However, for any future application the molecular qubits should be processable as thin films. Moreover, the individual qubits should be mutually interacting. The goal of PhD study is to prepare long-range ordered arrays of molecular qubits on solid surfaces a possible basis for a molecular quantum registry. The experimental research within the PhD study aims at the understanding of deposition/self-assembly phenomena of organic compounds containing magnetic atoms on metallic and graphene surfaces. A special focus will be given to graphene surfaces that provide means to control their electronic properties (by intercalation or external gate voltage) and, hence, mutual interaction of individual spins. The spin coherence properties will be investigated by cooperating partners at CEITEC and University of Stuttgart. (For detailed information, please, directly contact the Jan Čechal)
The goal of the project is developing process for preparing structural foams, in which the wall material is a composite with auxetic inclusions, and which have a prescribed porosity and Poisson´s ratio profile and minimized thermal expansion coefficient.
Sensor systems are evolving technologies with potential to contribute towards raising living standards and quality of life. In particular, gas sensors are important in numerous traditional applications in the industry, home safety and environment, but the modern scenarios for these devices also forecast their relevance in the Internet of Things and, specifically, less traditional areas as medical diagnosis. Against a host of competing enabling technologies for gas sensing, nanomaterial-based gas sensors are well positioned due to their potential to be miniaturized and integrated in portable electronic devices at relatively low costs. However, due to their intrinsic low selectivity, the use of multivariable sensor criteria (various integrated sensors) is projected for the future, and with this, the need of better use of electrical power to achieve autonomous systems. The aim of the thesis will be directed to energy saving in gas sensors, deepening further into the use of concepts based of self-heating of (1D) nanostructures and the investigation of optical gas sensing (a promising technology to save energy and take further the sensing at molecular level). The methodologies proposed involve micro/nano fabrication cleanroom processes and electronic/chemical/optical characterization techniques to identify the changes produced in the different developed elements during gas sensing. The specific tasks will be focus on: 1. Developing transducing platforms for self-heating and optical sensing using micro/nano fabrication cleanroom processes. 2. Testing the functional properties of the sensors upon gaseous biomarkers found in exhaled breath. The thesis proposal has a strong base on previous concepts implemented by the supervisor and her team, and it will include active collaboration with other research groups particularly at the Institute of Microelectronics of Barcelona and the Unviersity of Barcelona (Spain). With this project, the student will acquire knowledge on micro/nano fabrication, gas sensors, nanostructured materials, and electrical/optical characterization techniques. Keywords gas sensors, micro/nano fabrication, 1D nanostructures, self-heating based sensors, optical sensing, low power consumption
So-called high-entropy alloys represent one of the most promising classes of modern materials. They are characterized by specific atomic distributions when a number of chemical species randomly occupy crystalline lattice positions. Combination of different elements and their concentrations provide materials with a wide range of unique properties. After years of intensive research focused on mechanical properties of high entropy alloys, the international scientific community has become recently interested in their magnetic properties. These will be the main topic of the proposed PhD program. The planned measurements will be supported by theoretical simulations. The research will be based on a recent cooperation of Czech, German, Austrian and American scientists: O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E. P. George, J. Neugebauer, and A. Dlouhý, Magnetic properties of the CrMnFeCoNi high-entropy alloy, Physical Review B 96 (2017) 014437.
Switchable systems based on metal complexes able to change magnetic properties are highly attractive for sensor applications, new electronic devices, or active smart surfaces usable in materials providing high-density data storage. For these applications, the magnetic activity of metal complexes can be utilized and furthermore, it can be modulated by modification of their coordination, redox, electronic and ligand field properties. Three ways to obtain such function are to vary the ligand field strength, switching the coordination chemistry or switching the degree of coupling between two spin metal ions in the case of polynuclear compounds. The aim of the project is to synthesize bi- or multistable metal complexes incorporating switch regulation site in order to perform controlled spin change. Our systems will be characterized by different physical techniques: high field and frequency EPR and NMR spectroscopy, Mass spectrometry, SQUID and X-Ray crystallography.
Multiferroics are perspective materials for microelectronics, spintronics and sensory technology. Multiferroics combines advanced properties of minimum two types of materials as: ferromagnetics, ferroelectrics and ferroelastics. The work will be dedicated to the analysis of the mechanism of the magnetoelectric effect. The dissertation is supposed to include determination of the effect of electrical polarization and mechanical stresses on the magnetic structure.
The topic of this PhD study is a development of processing methods for a unique manufacturing of ceramic prototypes and small series of complex ceramic parts using 3D milling. The dissertation is focused on research into semiproducts (blanks) of advanced ceramics for 3D milling based on zirconia, alumina, calcium phosphates and other materials for dental and structural applications and prospectively even for customized complex-shaped surgical implants. The blanks will be prepared for both dense ceramic parts and bodies from a ceramic foam. For preparation of large and complex parts shaped machinable blanks will be developed that can ensure reliable and economical production of such parts. The blanks will be processed by CAD/CAM methods utilizing CNC milling.
Localized surface plasmons (LSP) generated in metal nanoparticles (plasmonic antennas) can exhibit various modes differing in energy, charge distribution (dipoles vs. multipoles) and radiation capability (bright and dark modes). One of the most effective methods enabling generation and characterization - mapping of these modes at the single antenna level is Electron Energy Loss Spectroscopy (EELS) provided by High-resolution Scanning Transmission Electron Microscopy (HR STEM). The PhD study will be aimed at application of HR STEM-EELS for mapping the modes of LSP in plasmonic antennas. The emphasis will be especially put at a study of hybridized modes of coupled antenna structures and/or strong coupling effects between modes in plasmonic antennas and excitations in their surrounding environments. These excitations will be polaritons in quantum nanodots localized nearby antennas (the visible range) and/or phonons in absorbing antenna substrate membranes (IR – mid IR). In the former case, the experiment will be carried out by HR STEM-EELS at CEITEC Nano infrastructure (Titan), in the latter case, by Nion Ultra STEM available at some laboratories abroad (e.g. Oak Ridge national laboratory).
The work is aimed at novel materials which are potential candidates to be useful for fabrication of planar and eventually 2-dimensional field effect transistors (2D FET). Research still has big gaps in the field of new 2D materials beyond graphene. Additionally, the area of bioelectronics is also interesting mainly for using of novel materials for neuro-recording and/or neuro-stimulation. Hence, there are opportunities to find appropriate utilization of materials for fabrication of devices in silicon based technology and also on flexible substrates. These materials can be used as physical and chemical sensors and chronic bioelectronics devices.
Tutor: Gablech Imrich, Ing., Ph.D.
The aim of the study is to delimit a region of mechanical stability of selected crystals under nonhydrostatic triaxial loading. For this purpose, phonon spectra will be computed for the crystals in their ground states as well as in deformed states. Phonon spectra will be obtained using force constants that will be computed by the VASP code.
Biodegradable materials for bone repair offer safer and less expensive treatment of bone fractures and defects. In addition to be biocompatible, bone implants should fulfil several mechanical requirements to be functional. During the Ph.D. project a comprehensive mechanical characterization of biodegradable materials suitable for bone repair will be performed. The aim is to adopt the mechanical behaviour of such materials in order to design the next generation of temporal implants. The methodology includes standard and novel static and dynamic mechanical tests, as well as ex vivo mechanical studies. Note: Highly motivated and collaborative candidates with outstanding track records and with the ambition to learn are welcome to submit the application.
Creep strains measured at very low applied stresses are, by their properties, very different from those measured at higher stresses during the conventional creep tests [1]. The stress and strain dependencies of the creep rate are much weaker and the strain is mostly anelastic. Deformation mechanisms controlling these strains are not known, mainly because there are no observable signatures of the small strains in the microstructure. The small strain kinetics is clearly related to the internal stresses build-up. At present, only one simplified micromechanical model exists which is based on the dislocation segments bowing. This model combines the viscous glide and climb of dislocations [2], but its predictions are only relevant for very small strains, not explaining the transition to the normal plastic creep regime. The main topic of the thesis is the development of the complex dislocation model which will provide better insight into a nature of creep strains which accumulate at very low stresses. The model should also address the transition into the normal plastic creep regime. The solution will be based on the simplified model mentioned above and will include realistic description of the interactions between dislocations and solute atoms. Recently developed discrete dislocation dynamics method [3] will facilitate a statistical description of dislocation segments reaching a critical stress condition. Experimental study of the low-stress creep of the selected metallic materials will be important part of the work. The materials having exceptional creep behaviour observed during the conventional creep tests will be targeted. The Institute of Physics of materials AS CR [http://www.ipm.cz] , which is fully equipped with all the required facilities, will be the workplace .
Tutor: Kloc Luboš, RNDr., CSc.
Candidate will construct microrobots powered by chemicals for environmental remediation using polymer and inorganic chemistry approach.
Tutor: Pumera Martin, prof. RNDr., Ph.D.
Geometric-phase optical elements are a new tool for complex light shaping and generation of special states of light. Unlike traditional refractive elements, the geometric-phase elements control the light using transformation of its polarization state. Thanks to technology of liquid crystals or principles of plasmonics, geometric-phase elements provide abrupt phase changes on physically thin substrates. Compact size and unique polarization properties make them ideal candidates for simply integrable spatial light modulators. The dissertation thesis topic is to find and verify the potential of geometric-phase elements in common-path digital holography and advanced optical microscopy.
Tutor: Chmelík Radim, prof. RNDr., Ph.D.
The aim of this Ph.D. topic is to investigate green and facile synthesis of CDs using microwave-assisted hydrothermal method or plasma synthesis from small organic molecules. Carbon dots (CDs) are a fascinating class of fluorescent nanomaterials, usually defined as carbon nanoparticles with a diameter below 10 nm. This family of materials includes graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). CDs display fluorescence depending on the excitation wavelength, excellent chemical stability and photostability, high water solubility, good biocompatibility, and low toxicity. Furthermore, they can be easily functionalized with other molecules (proteins, drugs, fluorescent dyes, etc.). By controlling the structure and size, their properties can be tailored to satisfy the demands of diverse applications in biomedicine, optoelectronics, solar cells, fluorescence sensors, photocatalysis, electrochemistry, and lithium-ion batteries. The thesis will study how the structure and dopping of CDs influence their functional properties, namely fluorescence and biocompatibility.
Tutor: Zajíčková Lenka, doc. Mgr., Ph.D.
Auxetic materials are materials with a negative Poisson's ratio. Their specific feature is that, unlike standard materials, they expand in the perpendicular direction during tensile deformation. This factor gives a wide range of applications for highly stressed components, which should be fixed. Auxetic material cannot be easily removed from the place where it is fixed. Their disadvantage is low rigidity. One way for auxetic material reinforcement was when combined with a conventional porous material with a positive Poisson's ratio. The student will deal with various possibilities of combining materials with negative and positive Poisson's ratio. The effect of reinforcement and stress distribution during deformation will be investigated. Materials will be theoretically described using solid-phase mechanics.
Tutor: Žídek Jan, Mgr., Ph.D.
For detailed info please contact the supervisor.
Tutor: Kalousek Radek, doc. Ing., Ph.D.
Durotaxis is the motion of an object on the surface of a material controlled by this surface's stiffness. The motion of microscopic drops of material over a solid surface is presented in the literature. The motion is controlled by a surface stiffness gradient [Theodorakis, P. E .; Egorov, S. A .; Milchev, A. Stiffness-guided motion of a droplet on a solid substrate, JOURNAL OF CHEMICAL PHYSICS 146, 244705, 2017.]. It is currently the subject of research on motion rules on soft surfaces (brush, gels, viscoelastic material). The student will compare the already known motion on a solid surface with the motion on soft surfaces. There will be investigated the role of entropy in these specific cases or whether it is influenced by intermolecular interactions. Directing objects' movement on the surface opens up further possibilities for designing organized structures at the molecular level. In cooperation with Dr. Panagiotis Theodorakis, the Institute of Physics of the Polish Academy of Sciences, Warsaw, PL.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno, in collaboration with Institute of Biotechnology (IBT), Prague, Czech Republic. The project focuses on a development of a method to seed cells inside a calorimeter with an internal volume of ≈ 100 fl under an objective lens of a high power optical microscope. A considerable part of the project involves development of special methodology to grow cells in a calorimeter. The method will then be applied to monitor cellular energetic balance with respect to cell life cycle, such as mitosis, induction of apoptosis etc. This work will be primarily conducted in CEITEC, with a minor involvement of the IBT; part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.
The main aim of this work is preparation and modification of nanocellulose natural material with finding suitable conditions for preparation of „smart“ biomaterials for wound healing. The modification will be carried out by enzymes ensuring biodegradation of nanocellulose and thus setting the “lifetime” of the biomaterial with respect to the rate of wound healing. In addition to chemical-physical characterization, the hydrogels will also undergo enzymatic degradation and biological monitoring of biocompatibility in vitro.
Tutor: Vojtová Lucy, doc. Ing., Ph.D.
Prismatic dislocation loops in metals are created by radiation damage or by severe plastic deformation. These loops are then obstacles for dislocations needed for plastic deformation and the material becomes brittle. The prismatic dislocation loops will be studied by molecular dynamic modeling and also by experiments using transmission electron microscopy.
The PhD candidate will model, design and fabricate an array of nanostructured electrodes made of Au, Ag or their amalgams to perform detection of cancer biomarkers. The work will start with literature study to determine the most suitable electrochemical method for biomarker determination. Then the PhD candidate will perform fundamental study of selected electrochemical detection techniques using standard electrode systems. In parallel he/she will also determine conditions for Au, Ag, AuHg, and AgHg electrochemical deposition forming nanostructured surface. After this surface characterization, such as surface area and composition. PhD candidate will design and fabricate a microfluidic system using micromachined array of nanostructured electrode and repeat the measurement described above, later on with an emulated clinical sample using metallothionein or other suitable cancer marker.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The project focuses on a development of a nanostructured materials for gecko mimicking surfaces. The key part of the work is to conduct finite element modelling (FEM) of the desired structure and to fabricate it primarily at CEITEC facility with collaboration with other places such as HKUST, Hong Kong, P.R. China. Next the surface of the structure has to be treated to get desirable surface properties by self-assembly monolayer and characterize it using force spectrum (force-distance measurement) by atomic force microscope. Creation of a system to demonstrate utilization of the adhesion force is highly desirable. This work will be primarily conducted in CEITEC. The candidate should be highly motivated, self-driven and passionate about science. Master degree in physics, mathematics or mechanical engineering is needed. Knowledge of basic instrumentation is essential. Good communication and interpersonal skills and fluency in spoken and written English are required.
Peptide sequences that provide structural, mechanical, chemical, or biological function can be borrowed from nature and fused into synthetic poly(amino acid) chains without replicating the entire natural biomolecular sequence. Supramolecular self-assembly of such rationally designed peptide sequences is emerging as a promising route to novel biofunctional materials. Hydrogels made from peptide with strong anticancer activity in the form of hydrated films will be prepared for tests in melanoma cancer and for wound treatment after operation on skin surface. The hydrogel films will be checked and optimized in terms of their flexibility to adapt to surfaces, to adhere to surgical open surfaces, to maintain their integrity and to be easily removable by washing. Ex vivo adhesion studies will be performed on mouse. In vitro wound healing assays will be run in order to evaluate the effect of hydrogels on wound closure using melanoma and fibroblasts cell lines and testing the acceleration of closure of a wound artificially created in cell monolayers. The focus is on synthetic or biosynthetic poly(amino acid) hydrogels based on α-helical coiled-coils or β-sheets short peptides.
Nowadays, there are many hot topics as gene editing, artificial enzymes preparation and application, questions about origin of life on early Earth, development of new analytical approaches and many others. Next generation of light induced reaction and processes are the common denominators of these hot topics and open up a new or innovative ways of solutions. Main goal of proposed doctoral work is the study and characterization of the light induced reactions and processes and their application to the analytical chemistry, material chemistry and prebiotic chemistry. The doctoral student will build on already published works as [1-4]. 1. Nejdl, L.; Zitka, J.; Mravec, F.; Milosavljevic, V.; Zitka, O.; Kopel, P.; Adam, V.; Vaculovicova, M. Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchim. Acta 2017, 184, 1489-1497, doi:10.1007/s00604-017-2149-8. 2. Rypar, T.; Vaculovicova, M.; Adam, V.; Nejdl, L. UV-Induced fingerprint spectroscopy (UV-IFS); Mendel Univ Brno: Brno, 2019; pp. 617-620. 3. Pavelicova, K.; Nejdl, L.; Vanickova, L.P.; Macka, M.; Vaculovicova, M. FRET as a powerful tool to study protein dimerization; Mendel Univ Brno: Brno, 2019; pp. 591-595. 4. Nejdl, L.; Zemankova, K.; Havlikova, M.; Buresova, M.; Hynek, D.; Xhaxhiu, K.; Mravec, F.; Matouskova, M.; Adam, V.; Ferus, M., et al. UV-Induced Nanoparticles-Formation, Properties and Their Potential Role in Origin of Life. Nanomaterials 2020, 10, 14, doi:10.3390/nano10081529.
The doctoral thesis is focused on research and development of complex multilayer coating heating systems composed from insulating and electrical resistance materials and produced by means of thermal spray technologies. The changes in physical and materials properties of heating systems will be also studied in detail. The aim of this work is to design of multilayer heating coating system with focus on its manufacturing utilizing powder metallurgy and thermal spray technologies processes, including the study of physical properties of each layer, its structural stability and phase transformations, which can take place within long term isothermal or cyclic thermal exposure. Conventional methods used in the field of material and physical engineering, which are available, will be used to study and evaluate in the frame of this work produced heating systems.
Tutor: Čelko Ladislav, doc. Ing., Ph.D.
A key obstacle in the development of complex multiscale theories lies in our current inability to directly control the structure formation at multiple hierarchically arranged length scales. Directed self-assembly of surface decorated precisely defined NPs represents means for obtaining precisely controlled spatial arrangements of NPs. No theoretical framework has been published describing the laws governing multi length scale assembly of NPs into hierarchical superstructures in polymer continua. We aim at developing experimental and theoretical foundations for novel multiscale hierarchical predictive model of relationships between structural variables, nature and kinetics of the structural hierarchy formation via self-assembly of NSBBs and the physico-chemical and mechanical properties and functions in polymer nanocomposites.
Due to their dimensions comparable with the wavelength of light, nanostructures can directly modify properties of reflected and/or transmitted electromagnetic waves. The discipline investigating the interaction of an electromagnetic wave and nanostructures is called Nanophotonics. Its applications can be found for instance in photovoltaics or enhanced optical spectroscopy. Besides the shape and dimensions of nanostructures, the light can be also modified by their material properties. Recently, many scientific teams have been concentrating on the optically active advanced materials such as perovskites or 2D transition metal dichalcogenides (TMDs). These advanced materials can be often characterized by their photoluminescence, especially using confocal optical spectroscopy, time-resolved spectroscopy, or scanning near-field optical microscopy. All these experimental techniques together with adequate numerical simulations (e.g., FDTD, DFT, BEM) are available at the Institute of Physical Engineering BUT and will constitute the main tools for successful completion of the PhD research project.
Magnetic materials constitute a highly tunable platform for the design of adaptive optical and magnonic elements. Moreover, coupled order parameters in complex magnetic phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. The Ph.D. candidate will explore the first-order metamagnetic phase transition in materials that have been subjected to strong spatial confinement and optical stimuli and design new functional systems by combining individual structures with well controlled properties into 2D and 3D arrays.
Within a stainless steel family comprising five basic types the wrought Cr–Ni austenitic stainless steels (ASSs) (AISI 300 grade) still occupy a privileged position. Due to their exceptional corrosion resistance and prominent mechanical and technological properties have found utilization in diverse industrial, domestic, architectonic and biological applications at room and elevated but also at cryogenic temperatures. The fcc paramagnetic austenitic structure of most of these alloys is known to be, however, metastable, i.e. it can partially transform to ferromagnetic bcc ′-martensite during cooling and/or plastic straining. The formation deformation induced martensite (DIM) can have a beneficial effect on mechanical properties of these steels (TRIP effect) but with respect to the corrosion resistance of these steels the presence of ′-martensite may be detrimental and in the case of some applications (e.g. superconducting magnets) must be avoided. The role of DIM in hydrogen environment embrittlement of metastable Cr–Ni steels considered as a perspective material for “hydrogen economy” is still controversial irrespective of the continuing progress. for more info contact supervisor
Nanophotonics embodies all sorts of specifically nanostructured surfaces that enable control of light propagation, acting as both free-space or integrated optical components. Introducing phase-change materials into nanophotonic devices brings in the possibility to tune or switch their properties and change them into active optical components. This dissertation will be focused on incorporation of phase change materials (such as VO2, Sb2S3 or Ge2Sb2Te5) into various nanophotonic devices with the main goal of optical control of the resulting tunable optical components.
The proposed Ph.D. project aims to study the plasma processing of nanofibrous mats. The envisaged applications of the mats include health care textile, filtration, protective clothing, and catalysis. The most notable benefit of nanofibrous polymer mats is their porosity and high surface-area-to-volume ratio enabling moisture absorption, promoting the exchange of gases, and providing a high drug loading amount per unit mass. Morphological proximity to the extracellular matrix (ECM) is advantageous for wound dressing and tissue engineering when serving for cell adhesion, growth, and proliferation. Plasma polymerization solves the problem of hydrophobicity or chemical inertness of nanofibers. This project investigates plasma polymerization concerning plasma and surface processes leading to the retention of reactive functional groups, nanoparticle formation, and understanding the penetration depth into microporous materials. Magnetron sputter-deposition of Cu-based coatings onto polymer nanofibers will be studied to prepare antibacterial coatings. The proposed Ph.D. topic is part of two international research projects integrating the collaboration with the Russian Academy of Sciences and Luxemburg Institute of Science and Technology.
In this study plasmonic resonant nano-and micro-structures (particles, antennas, tips) will be used for enhancement of photoluminescence of nanostructures such as nanodots, nanowires and 2D materials (e.g. metal dichalcogenides: MoS2, WS2,....). In this way single photon sources provided by defects of these structures might be recognized.
Tutor: Křápek Vlastimil, doc. Mgr., Ph.D.
The aim of the work will be the preparation of porous ceramic structures based on calcium phosphates tailored to replace the intervertebral disc. Using advanced ceramic processes, the microstructure, chemical composition and mechanical properties of the material will be optimized to allow the colonization of the ceramic by specific cells that will support the process of integration and healing.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The project focuses on a development of a portable system to detect presence of SARS-CoV-2 RNA and its isothermal amplification. The key part of the work is to perform a theoretical analysis of the system, derive an algorithm of the dPCR chip. In addition to the theoretical part, the PhD candidate will also design and fabricate a microfluidic RNA extraction system as well as an optical system based on a smartphone with a fluorescent filter and in cooperation with another student will create an algorithm for image processing in MATLAB. The PhD candidate will run an extraction protocol, and detect the presence of RNA. The system will be able to concurrently process 4 samples. This work will be primarily performed at CEITEC and partly also in cooperation with Charles University in Prague. The candidate should be highly motivated. A master's degree in physics, mathematics, mechanical or electrical engineering or molecular biology or another field in bioengineering is required. Basic knowledge of MATLAB environment is necessary. Good communication and interpersonal skills and knowledge of English are required. The student will NOT work with COVID-19 viruses or others, this work will be performed at a specialized workplace with an appropriate level of biological protection by designated workers.
Progressive sintering techniques enables the fast sintering of advanced ceramic materials, or the development of the final products with unique properties. The typical progressive sintering techniques are: Rapid Sintering, Spark Plasma Sintering, Flash Sintering and the newest Cold Sintering. The task of the proposed topic is the experimental verification of these novel techniques, study the kinetics of the sintering process and finding out the impact of these sintering techniques on the final properties (mechanical, optical, electrical etc.).
Tutor: Pouchlý Václav, doc. Ing., Ph.D., Ing.Paed.IGIP
Special engineering and bio-mechanical applications require the use of advanced materials. Because of their cost and purpose it is essential to ensure adequate strength of components made from them over the lifetime. From the viewpoint of material fatigue the number of load cycles often exceeds 107. Materials for these special applications will be tested in very high cycle fatigue regime, i.e. from 106 to 1010 cycles. Numerical simulations by FEM will be used to design specimens, tests will be carried out on ultrasonic testing machine, failure mechanisms will be searched using a scanning electron microscope.
The main objective of the study will be to find a suitable method for stabilization of proteins used for transdermal applications, its optimization and characterization including efficacy evaluation of prepared materials.
Due to their geometry, one-dimensional materials seem to be natural building blocks for many device systems, e.g. in electronics or photonics. They can be easily and reproducibly contacted and allow to design 3D devices. Additionally, they seem to be natural choice for nanoscale electrodes (e.g. for detecting cells signalling) or for nanoscale-patterned macroscale electrodes (e.g. in electrochemistry). 2D materials are less challenging, however, i tis necessary to prepare a suspended membranes to avoid formation of substrate/2D materiál interface, which can significantly affect e.g. their electrical properties. Currently, mostly undergraduates in our group deal with lithography, which is necessary for device design. We seek for a PhD candidate capable of fabricating a device geometry on demand, and aiming at performing measurements (electrical, optical) relevant for the device application (photonics, bio interfacing, sensing etc.).
Development of conventional medicine towards personalization stimulates acceleration of research of novel therapeutic modalities capable of active and selective targeting of diseased cells with the aim of simultaneous protection of healthy tissues and enhancement of therapeutic index of drugs. This can be achieved by binding or encapsulation of drugs into nanoscaled transporters. Among the most promising group of these nanomaterials belong proteins naturally occurring in organism, thus exhibiting a high level of bio- and immunocompatibility. In this postgradual thesis, recombinant ferritins varying in the subunits compositions switching their receptor affinity will be studied. Ferritins will be exploited for encapsulation of bioactive compounds useful in anticancer therapy. In addition, surface of ferritins will be utilized as platform for modification with targeting ligands (peptides, antibodies) affecting the receptor affinity of nanotransporters, or with macromolecules to improve the blood circulation time. Prepared nanotransporters will be also comprehensively studied in various biological models in vitro and in vivo.
Tutor: Heger Zbyněk, doc.
The possibility to tune the graphene transport properties, i.e., type and concentration of charge carriers, makes graphene an attractive candidate for electronic devices, sensors, and detectors. In this context, various approaches for providing graphene with controlled doping were developed. The original approach – application of an external electric field provided by the voltage between the graphene and a gate electrode – was followed by deposition of atoms or molecules featuring charge donors or acceptors in direct contact graphene. Remote graphene doping based on charge trapping in gate dielectric by visible-, UV-, and X-ray radiation was only recently established. In parallel, the effect of electron beam (e-beam) irradiation on graphene devices was evaluated, and the e-beam also entered the group of techniques capable of providing graphene with remote doping. The goal of Ph.D. is to reveal the mechanism of electron-beam-induced graphene doping, assess the role of defects in the dielectric layer, and develop a theoretical model describing the kinetics of the process. Our current understanding suggests that the key mechanism here is the charging of defects in an oxide dielectric layer, and a p-/n- doping is achieved depending on the possibility of forming electron-hole pairs in the dielectric layer by electron irradiation. We envision the utilization of the project outputs in adaptive electronics and the fabrication of graphene devices, in general. (For detailed information, please, directly contact Jan Čechal)
Research and development in processing and characterization of magneto-ionic and heterostructured multiferroics based on metal/oxide multilayers: (a) Ni/HfO2 for magneto-ionics and (b) Ni/BaTiO3 for artificial heterostructured multiferroic. The work will deal with optimization of magnetron sputtering conditions for dense Ni/HfO2 and Ni/BaTiO3 films; identification of thickness and geometrical effects on magneto-electric properties; structural and phase analysis of developed systems with the aim to achieve stable voltage-controlled effects for future magnetic devices.
The current development of wearable technologies beside to analytical methods for the determination of metabolites as markers of civilization diseases, requires studying the possibilities of combining both directions and seeking for non-invasive methods for new technologies useful in personal medicine, either directly wearable on the body or in the form of small mobile laboratories which are close in accuracy to those laboratories even without the need of professional staff. The work will require a search for the degree of compliance of markers in blood and body fluids, or on the periphery of the body (epidermis), discuss the development of such techniques, effects on accuracy and selectivity and propose a suitable quantitative or qualitative method of analysis. In particular, analyses of markers in the field of cardiovascular, respiratory diseases, stress hormones and diabetes are proposed.
Tutor: Hubálek Jaromír, prof. Ing., Ph.D.
The topic is focused on development of numerical methods for rigorous simulation of electromagnetic wave propagation in arbitrary inhomogeneous media. Namely, we assume investigation of the techniques based on the expansion into plane waves and/or eigenmodes in combination with perturbation techniques. Developed techniques will applied to modeling of light scattering by selected biological samples. Requirements: - knowledge in fields of electrodynamics and optics corresponding to undergraduate courses - basic ability to write computer code, preferably in Matlab.
Tutor: Petráček Jiří, prof. RNDr., Dr.
Scanning Probe Microscopy techniques (SPM) and particularly Atomic Force Microscopy (AFM) are most common techniques for surface topography measurements. They have however still some limitations, for example its limited scanning range and lack of techniques for sub-surface mapping. Even if the interaction between probe and sample is already including information from sample volume, typically only surface topography or surface related physical properties are evaluated and the sub-surface information is lost. In most of the scanning regimes the amount of recorded and stored data is even so small that the information about sample volume is lost. On the other hand, there is lack of reliable subsurface mapping techniques with high resolution suitable for the growing field of nanotechnology, and methods of SPM tomography have large potential – and we can already see some first attempts for sub-surface mapping in the scientific literature. Aim of the proposed work is to develop techniques for mapping volume sample composition using SPM, particularly based on AC Scanning Thermal Microscopy and conductive Atomic Force Microscopy. This includes development of special reference samples, methodology and software development for control of a special, large area, SPM. In cooperation with the research group also a numerical modeling of probe-sample interaction will be performed and methods for sub-surface reconstruction will be tested.
Tutor: Klapetek Petr, Mgr., Ph.D.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. Goal of this work is to perform theoretical study and characterize a nanostructured material which changes color based on the environment. The PhD candidate will first perform finite element modelling (FEM) to determine the physics origin of the structure behavior and fit the model on the actual structure. Then the available structures will be further studies using techniques such as near-field optical microscopy, atomic force microscopy and scanning electron microscopy. The PhD candidate will try to replicate the structure at CEITEC cleanroom or at National Institute of Standard and Technology (NIST), Gaithersburg, USA. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.
Control over thin molecular films composed of single-molecule magnets or quantum bits is crucial in the development of novel electronic and magnetic devices. Their behaviour on surfaces is yet largely unexplored area. This PhD project will use the already existing high-vacuum chamber for thermal sublimation of thin films of coordination transition metal and lanthanide complexes. The student will work on the whole route from a bulk as-synthesised powder to a nanostructured thin film. The final goal is to be able to predict and evaluate the magnetic properties of such films by newly built high-frequency electron spin resonance spectrometer (HF-ESR). Additional surface-sensitive spectroscopic and microscopic methods such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) will be used to study prepared thin films. The student will communicate and perform tasks in international collaboration with research groups in the USA and Italy.
The work aims at deeper understanding of stability of plasma-sprayed thermal barrier coatings (TBCs) as affected by the roughness of MCrAlY bond coat. Damage mechanisms and damage evolution in TBCs will be examined to identify the optimal topography of the bond coat in order to improve coating performance for components used in propulsion and power generation industries. Conventional MCrAlY + ZrO2-Y2O3 TBCs with the bond coat prepared by plasma spraying using feedstock powders with different size-distribution will be studied under high-temperature isothermal oxidation, thermal cycling, and room temperature mechanical loading.
Tutor: Slámečka Karel, Ing., Ph.D.
Bismuth ferrite is characterized by presence of magnetoelectric effect. Interaction between magnetization and electrical polarization is defined by crystal lattice. The goal of this work will be obtaining of homogeneous antiferromagnetic structure by selecting parameters for samples preparation. Results of this field represent interest for design of memristors, sensor technologies, etc.
Bandstructure engineering of semiconductor heterostructures enables optoelectronic devices with designed characteristics. The material parameters of conventional III-V semiconductors limit the wavelength range of such devices to infrared wavelengths. The scope of this thesis is to characterize and optimize oxide-heterostructures to apply established concepts like electro-optic modulation, non-linear wave-mixing or intersubband detection to shorter wavelengths in the visible or near-UV. Previous experience with measurement setups at CEITEC (SEM, TEM, AFM, XPS, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on novel materials for sensing applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.
Our thorough understanding of magnetic properties is intricately inter-linked with a detailed information about the structure of studied materials. The decreasing particle size and/or temperature resulted in the past few years to the observation of new magnetic states, for example, the superparamagnetism. Importantly, the magnetic states sensitively depend on the atomic structure, crystal boundaries and/or magnetic domains which all significantly change with the temperature. The proposed PhD study will therefore focus on these structure-property relations at low temperatures. The following aspects will be covered: - Preparation of samples by various methods - Structural study of materials by XRD, SEM, TEM, AFM etc. - Magnetic measurements by VSM, PPMS and SQUID
The doctoral thesis will deal with research in the field of catalytic reactions using analytical methods capable of monitoring reactions in real-time. The reactions will be studied by various analytical methods such as UHV-SEM, E-SEM, MS, SIMS etc. aiming to better understand the mechanism of catalytic reactions on different types of surfaces (crystals, nanoparticles) and in a wide range of reaction pressures. In the first phase, the oxidation of carbon monoxide and subsequently other oxidation or reduction reactions important in technical practice will be studied. The work will also include the development of new methods and devices enabling real-time observation under various experimental conditions.
The use or conversion of carbon dioxide into sustainable synthetic hydrocarbon fuels, in particular for transport purposes, continues to attract worldwide interest and may lead to the start-up of a circular economy based on the CO2 capturing from air and subsequent hydrogenation. Recently, iron-based catalysts were used for the direct and efficient conversion of CO2 to jet fuel range hydrocarbons. The thesis will deal with the research of such catalytic reactions that take place on metallic surfaces. Reactions will be studied by different analytical methods like UHV-SEM, E-SEM, MS, NanoSEM, SIMS, TEM, and others to deeply understand the mechanism of the reaction on different types of surfaces (crystals, nanoparticles) and a wide range of reaction pressures.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to perform theoretical study, design, fabrication and characterization of 2D materials-based field effect transistor (FET) sensors made by an advanced planar technology and using modern 2D materials such as silicene, germanene etc. PhD candidate will identify the system signal noise ratio and limit of detection (LOD) of the biosubstances of interest using 2D FETs. He/she will also design and fabricate a simple microfluidic system to confine the tested sample at suitable location at the chip. PhD candidate will work together either with Regional Centre for Applied Molecular Oncology (RECAMO) or with a group at Mendel University. This work will be primarily conducted in CEITEC. The candidate should be highly motivated, self-driven and passionate about science. Master degree in either physics, mathematics, biology, analytical and physical chemistry is needed. Knowledge of MATLAB and basic skill of instrumentation is plus. Good communication and interpersonal skills and fluency in spoken and written English are required.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to study adhesion force between nanostructured surface and living cells using microfluidic systems. The student will set up a system of nanostructured pillars with desired surface properties. It is expected that the cells will attached to the top of the pillars and due to adhesion forces the cells will deform the pillars’ shapes. The student will capture a real-time video of the structure using either confocal or holographic microscope. The video will be processed by a script in MATLAB environment to create a real-time video of the adhesion force between the cell and the pillars. This work will be primarily conducted in CEITEC. The candidate should be highly motivated, self-driven and passionate about science. Master degree in either physics, mathematics, molecular or cell biology, analytical, physical chemistry, bioengineering or biology is needed. Knowledge of MATLAB and basic skill of instrumentation is plus. Good communication and interpersonal skills and fluency in spoken and written English are required.
Carriers of active compounds represent an advanced platform for the controlled delivery of mostly water-insoluble drugs to the desired site in the human body. Hyaluronic acid derivatives were identified as one of the most promising groups of biomaterials for advanced carrier systems. However, precise control of the supramolecular structure is required to ensure application performance. Therefore, it is necessary to fundamentally understand self-assembly process of hydrophobically modified hyaluronic acid. Derivatives with various architecture of chains exhibiting different final properties were prepared. Therefore, a relationship between architecture of chains, structure of self-assembled units and functional properties will be developed. Nanostructure of self-assembled systems will be studied by both microscopic (SEM, AFM) and scattering (DLS, SAXS) techniques. Furthermore, fluorescence spectroscopy and rheology will be used. The supramolecular structure will be related to the physico-chemical properties of the chains and the key parameters controlling the self-assembly process will be identified. The influence of supramolecular structure on functional properties, especially the binding of hydrophobic substances, will also be studied.
Tutor: Ondreáš František, Ing., Ph.D.
There is a PhD scholarship for work on the project at the Central European Institute of Technology (CEITEC) in Brno. The project is focused on thermodynamics of the photosynthesis of algae. The key part of the PhD work is design, manufacturing, test and evaluation a microfluidic calorimeter to measure photosynthesis taking place in algae. The PhD student will design a system for measuring changes in the calorimeter with an accuracy of 1 mK or less. He/she will be able to detect changes in the microcaloriemeter and thereby monitor photosynthesis to an accuracy of 1 pW or less. This work will be conducted in the CEITEC as well as in collaboration with the Institute of the Academy of Sciences of the Czech Republic in Trebon, and HKUST in Hong Kong, PRC. The candidate should be highly motivated person. A master's degree in physics, mathematics, engineering, or molecular biology or a field of bioengineering or biology is required. Good communication and interpersonal skills and knowledge of English are required.
Fiberous materials represent scientifically and technologically higly interesting materials, owing to their easy preparation, compositional flexibility, dimensionality, possibility to tune fiber dimensions vs. porosity, etc. The aim of this thesis is to develop new compositions and structures of fibers with diameter on the sub-micron or micron scale. The focus will be given on inorganic fibers (in particular oxides) that have potential for filtration and catalytic applications. In particular, part of the thesis will be also devoted to the development of electrically conducting fibers for various applications in textile, electronic and military industries. Two techniques will be mainly used: centrifugal spinning and electrospinning. Various shapes of fiberous structures will be investigated, including planar layers, bulky forms, fibers with a specific orientation, etc. The conducted research will be very application oriented. Cooperation with partners from industry is expected for the testing of the application potential of developed fibers.
Tutor: Macák Jan, Dr. Ing.
The direct conversion of sunlight into electricity is a very elegant method to produce environmentally friendly renewable energy. This branch of science is known as "photovoltaics (PVs)." Recently ferroelectric (FE) solar cells have become very popular among various research groups all over the world due to their unique features such as having open circuit voltages (VOC) higher than their band gaps, and holding spontaneous polarization, which leads to a photovoltaic (PV) effect. The current problems with the present FE PV materials is that i) wide band gap (Eg), which is close to 3 eV for the most of FE PVs, ii) poor sunlight absorption, iii) short lifetime of the generated charge carriers and iv) the low mobility of charge carriers. The present PhD study aims at: i) reducing the band gap of targeted FE materials usually having band gaps between 2 and 4 eV via doping. ii) Hybridizing organic singlet exciton fission (SF) materials with inorganic FE materials to synthesize epitaxial FE photovoltaic (PV) films. iii) Investigating the electrical and optical properties of obtained FE-PVs. iv) Understanding the mechanism behind the solar energy conversion in FE PV devices. FE PV thin films will be grown by using physical vapor deposition processes, for instance, magnetron sputtering, pulsed laser deposition and molecular beam epitaxy. The obtained films will be characterized by X-ray diffraction method, X-ray Photo-electron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and HR (S)TEM and so on. Furthermore, the optical and electrical properties of the materials will be examined.
The aim of this topic will be the synthesis and characterization of composites containing a carbon-based material in combination with various metal nanoparticles, chelating agents, molecules, chemicals rich in biogenic elements, or polymers. Some carbon-based nanomaterials have unique ability to adhere to different surfaces and operate as carriers. The composites have attracted increasing attention because of their unique properties emerging from the combination of organic and inorganic hybrid materials. By combining the attractive functionalities of both components, and the nanostructure of the particles, nanocomposites are expected to show new and improved properties. Prepared composites will be applied as wood or plant protectants.
A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The project focuses on a development of a digital polymerase chain reaction system (dPCR). The key part of the work is to perform a theoretical analysis of the system, derive an algorithm and design the dPCR chip. Besides the theoretical part the PhD candidate will also setup and optical imaging system using CMOS (CCD) camera with fluorescent filter set and write an algorithm to perform the image processing using MATLAB environment. The PhD candidate will either fabricate new or uses currently available dPCR chips, runs the dPCR protocol and detect number of wells in the chip containing DNA. The student will also perform PCR multiplexing to detect more than one gene at the chip with an aim to identify DNA related to Down syndrome or similar. This work will be primarily conducted in CEITEC and partially also together with Carles University in Prague. The candidate should be highly motivated, self-driven and passionate about science. Master degree in either physics, mathematics, mechanical engineering or molecular biology is needed. Knowledge of MATLAB environment is essential. Good communication and interpersonal skills and fluency in spoken and written English are required.
Detecting single molecules may be considered a “holy grail” for analytical chemists –direct counting of molecules is the most straightforward method for estimating their concentration. Molecular counting reshapes the ways analytical chemists work towards a more reliable, more accurate, more complex, and more affordable analysis. Analyte molecules can be specifically labeled by luminescent molecules or nanoparticles and visualized by recording their images by a digital camera. Thus, the number and spatiotemporal distribution of analyte molecules can be estimated. Fluorescent molecules and fluorescent nanoparticles are the best known optical labels. However, they commonly suffer from photobleaching, blinking, and moderate capabilities for multiplexing. To address these limitations, photon-upconversion nanoparticles were introduced. Photon-upconversion nanoparticles (UCNPs) provide short-wavelength emission (including visible) under the near-infrared excitation of moderate intensity. Near-infrared excitation is less scattered, does not cause photochemical damage to living tissues, and does not cause autofluorescence, i.e., provides “background-free” imaging/detection. UCNPs provide excellent stability (hours of continuous single nanoparticle imaging) and good capabilities for multiplexing (a large number of nanoparticles may be barcoded on a single nanoparticle level). This thesis focuses on the further development of photon-upconversion labels for singlemolecule assays to reduce the time of analysis, decrease the limit of detection, introduce multiplexed single-molecule detection, and expands the field of use. Ultrasensitive singlemolecule detection promises improved diagnostics and disease treatments, tracing environmental micropollutants and single-molecule visualization may become a routine tool in hands of molecular biologists.
Currently there is a big expansion in the development of nanomaterials that find their use in industry. As they become mass spread the risk of leaking into the environment increases and therefore it is necessary to monitor their influence on various ecosystems. Laser-Induced Breakdown Spectroscopy (LIBS) is an optical emission method suitable for elemental mapping of large sample surfaces. The information about biodistribution and bioaccumulation of material in the organism is crucial for correct evaluation of its toxic effect. The LIBS method can detect contaminants in plants with sufficient resolution. The goal of this work is to determine bioaccumulation and translocation of selected nanomaterials in plants.
For further details, please contact mafri@ipm.cz.
The project concerns the development of advanced ceramic thermal and environmental barrier coatings (TEBCs) for applications in future high-performance gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. The design of new barrier coating systems will be performed in order to reach their improved temperature capability, environmental stability, and long-term fatigue-environment system durability in comparison with the existing counterparts. The methodology includes preparation of the barrier coatings by different thermal spray technologies and their testing using high pressure burner rig and furnace cyclic oxidation rig with the following overall microstructural analysis to evaluate the coating thermal stability, cyclic durability, and erosion resistance under simulated engine environments. Highly-motivated and collaborating applicants with the ambition to learn are welcome to enroll.
The topic of the dissertation thesis focuses on research into flexible self-supporting ceramic foils with a thickness ranging from 0.05 to 1 mm. The research will be concern with the preparation of ceramic foils and with mechanical, electrical, or optical properties of such foils. The basic task will be the development of unique methods for the preparation of ceramic foils from nanoparticulate suspensions. The research will be aimed at electrotechnical applications that utilize ceramic foils as flexible dielectric substrates or piezoceramic energy harvesters.
Dynamic Nuclear Polarization (DNP) is a phenomenon, that can enhance greatly the NMR sensitivity (several hundred times at least). There are several mechanisms of DNP, though all of them result from the transferring of electron spin polarization (from special polarizing agents) to nucleus. This process is strongly dependent on the electron spin relaxation of the polarizing agent. However, due to the instrument limitations, the spin dynamics of polarizing agents is studied very poorly at frequencies above 100 GHz, especially at frequencies of 263, 329 and 394 GHz, which correspond to NMR proton frequencies of 400, 500 and 600 MHz, respectively. Usually, the spin relaxation properties are studied using the pulsed method. Unfortunately, the nowadays level of microwave sources at THz frequencies, mostly in terms of output power, does not allow the implementation of the pulsed technique in the wide frequency range. For this reason, the Rapid Scan Electron Spin Resonance (RS-EPR) spectroscopy is the only possible technique for the investigation of spin dynamics at THz frequencies. In this project, PhD student will (i) develop and implement a technique of fast frequency sweeps into the high field/high frequency EPR spectrometer (ii) investigate the spin relaxation processes in different DNP polarizing agents in the wide frequency and temperature ranges.
Topological insulators (TIs), which demonstrate conductor properties at surfaces and behave as insulator in the bulk, present unique quantum state properties. Therefore, we have witnessed enormous research interest on these materials. It is anticipated that TI materials have a great potential to serve as a platform for spintronics due to their spin-locked electronic states, which could open new avenues for spintronic, quantum computing and magnetoelectric device applications. Moreover, interfacing TIs with superconducting layers is predicted to create mysterious physical phenomena, ranging from induced magnetic monopoles to Majorana fermions. The present PhD study aims at i) synthesizing theoretically studied topological insulators and ii) investigating topological superconductors, formed by hybridizing TIs and superconductor materials. TI and superconductor thin films will be fabricated via employing physical vapor deposition processes such as magnetron sputtering, pulsed laser deposition and molecular beam epitaxy. The obtained films will be characterized by X-ray diffraction method, X-ray Photo-electron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and HR (S)TEM and so on. Furthermore, the magnetic properties of the thin films will be examined by Vibrating Sample Magnetometer (VSM). In addition, magneto-transport measurements of these films will be carried out as well.
The Low Energy Ion Scattering (LEIS) has proved its capability to study composition of the solid state surfaces. The extreme surface sensitivity of the technique is widely used in analysis of the elemental composition of a topmost atomic layer. The topological insulators are materials where the thin surface layer is conductive in two directions parallel to the surface plane while the bulk material remains insulating. These materials are very promising in the field of spintronics and quantum computation. Thus the surface termination plays the critical role in the definition of the topological insulator properties and can be effectively studied using LEIS in combination with selected analytical and imaging techniques (XPS, SIMS, SEM, AFM and STM). The state of art LEIS spectrometer (Qtac100, ION-TOF GmbH) is part of the complex UHV apparatus for deposition of thin films and modification of solid state surface at micro and nanotechnology laboratory of CEITEC BUT.
The work will be devoted to a study of transport properties of 2D materials (graphene, transition metal dichalcogenides,….) modified by various layers of adsorbants. Emphasis will be put on in situ-measurements of these properties under well defined UHV conditions and consequently to their utilization in sensing and other applications.
The thesis will focus on finding efficient routes to control magnetic configurations without applied magnetic fields using femtosecond laser stimuli. The physical phenomena involved are linked to ultrafast spin dynamics and the associated energy and angular momentum transfer between the spins, electrons, and lattice. The proposed experimental approach will exploit magnetic heterostructures to generate collective magnetic excitations. The project assumes previous experience with optical set-ups.
The main objective of the proposed project is to investigate effects of structural variables such as molecular weight, supermolecular structure and interfacial adhesion on the fracture behavior of composites with polymer matrix based on recycled PE/PP compatibilized with suitable means. Principál goal of the project is the quantification of the structure – property relationships with emphasis on the molecular and supermlecular structure of the recycled PE/PP blends, interactions between PE/PP matrix and the reinforcing short fibers or graphenoids and the fracture mechanisms under both static and dynamic loading conditions. The results of the proposed project will enable to optimise the material’s composition with respect to the selected applications and will allow to expand application range of these materials into structural applications with greater added value.
The study will be aimed at design, fabrication, and characterization of resonant plasmonic nano- and micro-structures (“diabolo” antennas, split ring resonators, etc.) providing a significant local enhancement of magnetic components of electromagnetic fields. The structures with resonant properties particularly in the IR and THz will be studied, with respect to their potential applications in relevant spectroscopic methods.
The doctoral thesis will focus on research and development of new analytical approaches in the field of secondary ion mass spectrometry (SIMS) and electron microscopy for the study of nanostructures and their ability to moderate catalytic reactions (CO oxidation, CO2 hydrogenation etc.). The work will focus on the development of new experimental procedures capable of monitoring the composition of the surface and nanostructures during reactions in real-time.
Tutor: Bábor Petr, doc. Ing., Ph.D.
Neuromodulation technologies rely on electrical stimulation of the nervous system, and are used both in fundamental research and in numerous medical applications. Wireless stimulation devices, powered by tissue-penetrating deep red and infrared light wavelengths, can enable minimally-invasive solutions without wires and interconnects. This project involves fabrication and testing of light-powered neurostimulation, with a focus on maximizing efficiency while reducing the size of devices. An important parameter is the formation of a low-impedance electrical contact with the neural tissue. The project involves micro and nanofabrication, with a focus on semiconductor materials and electronics, while also involving advanced electrochemical and photoelectrochemical measurements. Collaboration with neuroscientists and participation in animal studies is envisioned as an important aspect of the project.
Tutor: Glowacki Eric Daniel, prof., Ph.D.
X-ray micro computed tomography is becoming one of the commonly used imaging methods in the fields of developmental biology and other biological disciplines. In the native sample only the mineralised bones are visible in the microCT scan, the visualization of the soft tissues requires the staining of the sample in the solutions of elements with high proton number. When the scans of the same sample in native and stained condition is combined the time-consuming process of segmenting the mineralised bones from the stained dataset can be skipped, this new approach enables much faster method of analysing the complex biological samples. In the scope of this work the optimising of the staining method of soft tissues and co-registration of both stained and native scans of same sample will be performed.
Supercapacitors (SCs) represent one of the most promising energy storage technologies because of their remarkable features, such as ultrahigh power density and ultralong cycling life. This PhD study aims at an exploration of 2D hybrids based on MXenes and black phosphorous (BP), as high-performance electrode materials for SCs. It will concentrate on (i) multi-scale characterization of 2D hybrids up to atomic resolution to provide fundamental knowledge underlying the interaction between the components of 2D hybrids, and on (ii) an in situ study of chemical stability and growth mechanisms of these materials. In the study, state-of-the-art characterisation methods available at CEITEC Nano core facility such as Low Energy Electron Microscopy (LEEM), UHV STM/AFM, X-ray Photo-electron Spectroscopy (XPS), Low Energy Ion Scattering (LEIS), Scanning Auger Microscopy (SAM), FT-IR Spectroscopy, and HR (S)TEM will be used. The collaboration with the Dresden University of Technology planned to synthesize the 2D materials will be held.
This thesis will focus on the fabrication of new 2D materials for water treatment and purification.
The dissertation thesis will deal with the development of 3D epitaxial printing using eutectic liquid droplets, which are moved by electron beam (electron tweezers) in the UHV-SEM microscope, developed in cooperation with TESCAN. During the movement, the gold-containing droplet is saturated with germanium (silicon) atoms, resulting in epitaxial deposition of the semiconductor at the droplet location. The movement of the droplet and thus also the "print" location of the semiconductor can be controlled programmatically. Part of the work will be optimization of this process including its real-time monitoring using UHV-SEM microscope.
This thesis will focus on the research and development of new 3D printed materials for fabrication of supercapacitors.
This thesis will focus on the research and development of new 3D materials for electrochemical sensing and biosensing of important environmental pollutants.
The PhD work will be concerned with manufacturing of complex ceramic parts with internal structure using the LCM method (Lithography-based Ceramic Manufacturing). The research will be focused on investigation of ceramic suspensions for the LCM method and on correlation between the processing conditions of LCM method and the properties of the final ceramic parts. The research will be aimed at applications in medicine. The internal structure of calcium phosphate bioscaffolds for bone regeneration will be optimized with respect to modification of ceramic skeleton with inorganic as well as organic biopolymers.
The main aim of this work is to prepare “smart” hydrogel substrates that are able to react to pH or temperature and are suitable for 2D and 3D cell monitoring in molecular biology or tissue engineering, or for testing new drugs on cancer cells. Hydrogels should be suitable for both in vitro and in vivo applications. In addition to chemical-physical characterization, hydrogels will be subjected to biodegradation and monitoring of biocompatibility in vitro.