Přístupnostní navigace
E-application
Search Search Close
study programme
Faculty: FEECAbbreviation: DKAD-EITAcad. year: 2022/2023
Type of study programme: Doctoral
Study programme code: P0619D060001
Degree awarded: Ph.D.
Language of instruction: English
Accreditation: 8.10.2019 - 7.10.2029
Mode of study
Combined study
Standard study length
4 years
Programme supervisor
doc. Ing. Jiří Hošek, Ph.D.
Doctoral Board
Chairman :doc. Ing. Jiří Hošek, Ph.D.Councillor internal :prof. Ing. Jaroslav Koton, Ph.D.prof. Ing. Zdeněk Smékal, CSc.prof. Ing. Jiří Mišurec, CSc.doc. Ing. Vladislav Škorpil, CSc.doc. Ing. Radim Burget, Ph.D.Councillor external :prof. Ing. Ivan Baroňák, Ph.D.doc. Ing. Miloš Orgoň, Ph.D.doc. Ing. Otto Dostál, CSc.
Fields of education
Study aims
The student is fostered to use the theoretical knowledge and experience gained through own research activities in an innovative manner. He/She is able to efficiently use the gathered knowledge for the design of own and prospective solutions within their further experimental development and applied research. The emphasis is put on gaining both theoretical and practical skill, ability of self-decisions, definition of research and development hypotheses to propose projects spanning from basic to applied research, ability to evaluation of the results and their dissemination as research papers and presentation in front of the research community.
Graduate profile
The doctor study program "Electronics and Information Technologies" aims to generate top research and development specialists, who have deep knowledge of principles and techniques used in communication and data wired and wireless networks and also in related areas and also in data/signal acquisition, processing and the back representation of user data on the level of application layer. The main parts of the studies are represented by areas dealing with information theory and communication techniques. The graduate has deep knowledge in communication and information technologies, data transfer and their security. The graduate is skilled in operation systems, computer languages and database systems, their usage and also design of suitable software and user applications. The graduate is able to propose new technology solution of communication tools and information systems for advanced transfer of information.
Profession characteristics
Graduates of theprogram "Electronics and Information Technologies" apply in particular in research, development and design teams, in the field of professional activity in production or business organizations, in the academic sphere and in other institutions involved in science, research, development and innovation, in all areas of the company where communication systems and information transfer through data networks are being applied and used. Our graduates are particularly experienced in the analysis, design, creation or management of complex systems aimed for data transfer and processing, as well as in the programming, integration, support, maintenance or sale of these systems.
Study plan creation
The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive. Within mainly the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis. By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course. In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis. By the end of the winter term in the fourth year of study the full-time students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The combined students submit the elaborated dissertation thesis by the end of winter term in the fifth year of study. The final dissertation thesis is expected to be submitted by the student by the end of the fourth or fifth year of the full-time or combined study form, respectively. In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.
Issued topics of Doctoral Study Program
The thesis is focused on modeling, simulations and experimental verification of structures where relation between response and driving signal contains derivation or integration of non-integer order (so-called fractional structures or circuits). The task is also to design of suitable application possibilities of fractional order circuits, e.g. frequency filters, reconfigurable filters, tunable oscillators or other circuits. Attention should be kept also on other ways how to implement fractional order circuits, e.g. implementation of structures with distributed parameters (RC-EDP), on computer modelling of matter and structures from nature and biology and also on mathematical description.
Tutor: Jeřábek Jan, doc. Ing., Ph.D.
This topic is focused on design of two-ports, filtering circuits especially and oscillators for instance, with possibility to externally and electronically change significant parameters of the circuit and in the case of filter also change of type of frequency response. Design with fractional-order element sis also expected. Available active elements are supposed to be used as it is or in modified variants. Simulations not only with simple models but also with transistor-level structures are expected. When verified by experimental measurement, behavioural modelling is preferred.
Goal of this thesis is to research in area of measurement of basic parameters of data networks based mostly on Internet Protocol (IP), such as throughput, one-way delay and round-trip time, so as in area of derived parameters, such as quality of voice and video services. This comes with problematics of modelling of behaviour of network and user under various conditions, long-term and short-term events, a description of mass-serving systems and also features and behaviour key internet and measuring protocols in computer networks, so as topic of their possible setting and security. Based on analysis of available tools and their features, or development of own tools, design of solution and approaches for various types of measurements is expected. Designed methodology should be verified both in environment of lab and real-world networks.
The thesis focuses on designing optimization methods of MOS-only analog ultra-wideband analog integrated systems-on-chip of arbitrary integer and fractional order. The aim is to research and develop low-voltage and low-power applications by practical usage of transistor parasitics that work in frequency range units of GHz. Selected novel implementations of true-time delay circuits, oscillators, second- or higher-order filters, emulators of synthetic inductors, etc., with potential applications in 6G communication systems will undergo on-chip fabrication and experimental verification.
Tutor: Herencsár Norbert, doc. Ing., Ph.D.
The dissertation focuses on researching novel structures of non-conventional analog active function blocks such as current or voltage conveyors using a chemical description of their terminal variables. The research aims to develop novel structures of chemical conveyors of different generations and their utilization in measurement systems for sensing fundamental quantities in biomedical systems. Selected systems will undergo on-chip fabrication and experimental verification.
The thesis is focused on the research of analog emulators of fractional-order elements (FOEs) with an order of (-1; +1). The aim is the development of reliable low-voltage and low-power MOS transistor-based emulators of capacitors and inductors by practical usage of influences of transistor parasitics. Selected novel implementations of FOEs will be used to model different varieties and types of agricultural products and biomedical tissues (fruit/vegetable aging, ear channel/lung/liver modeling of humans and animals, etc.) based on real measured data collected via electrical impedance spectroscopy measurement technique.