Přístupnostní navigace
E-application
Search Search Close
Branch Details
FCHAbbreviation: DKAO_CHM_4Acad. year: 2020/2021
Programme: Chemistry, Technology and Properties of Materials
Length of Study: 4 years
Tuition Fees: 2000 EUR/academic year for EU students, 2000 EUR/academic year for non-EU students
Accredited from: 21.12.2015Accredited until: 31.5.2024
Profile
The aim of the study is to educate experts in the field of materials engineering and engineering technology with an emphasis on chemical processes and material properties. In studies are also included basics of testing and measuring methods that the students were able to work not only as a leading technology teams in chemical plants, but also in basic and applied research, research and development institutes involved in the testing of physical-chemical characteristics of substances and in dedicated production promising new materials. This is also directed domestic and international internships. The inclusion of practical exercises doctoral students acquire basic experience with students, allowing them in the future can be integrated into the process of teaching at universities and secondary schools.
Key learning outcomes
Chemistry graduate DSP technology and material properties is able to formulate a scientific problem, propose a hypothesis to solve it and make experimental and theoretical attempts to confirm it. An integral part of the basic knowledge of graduate DSP is the ability to critically assess published scientific information and the ability to express oneself in writing in the English language.
Occupational profiles of graduates with examples
Graduates of Chemistry, Technology and material properties are equipped with both experimental and theoretical knowledge in the field of material structures and their properties. They control a number of methods for the characterization of materials not only at the level of theoretical description , but are also familiar with the practices of their use in practice ( a lot of information gain among others, during internships at foreign universities ) . Stays allow them to also expand your language skills. Theoretical foundations of obtain in appropriately selected subjects. Graduates also have experience in the provision of information and presentation of results at conferences and professional seminars , not only in Czech , but also the English language. Doctoral students are also encouraged to independent and creative thinking and technological foresight , allowing them to solve technological problems in a number of operations. Given that the study course " Chemistry, Technology and Properties of Materials " is a modern -conceived field of doctoral study, which is based on the current state and needs of the chemical, electronic and consumer goods industries , graduates are eligible to work in both the industrial sector and areas applied and basic research. It should be noted that the graduate study program also has a basic knowledge of chemistry and physics. The general basis is extended by special courses that include, for example, the progress of chemistry and physics , nanotechnology , use of secondary raw materials, bioengineering and the use of chemical and physical laws in the areas of inorganic and organic compounds.
Entry requirements
We expect knowledge of basic chemical, physical and physically-chemical concepts and principles to the extent specified for the comprehensive MA exam in chemistry, physics and physical chemistry at the Faculty of Chemistry of the Brno University of Technology, eventually at other similarly focused BUT faculties or other university faculties. Other requirements: interest in engineering and scientific work, knowledge of English and good results in the previous study (better than average grade of 2). We expect knowledge of basic chemical, physical and physically-chemical concepts and principles to the extent specified for the comprehensive MA exam in chemistry, physics and physical chemistry at the Faculty of Chemistry of the Brno University of Technology, eventually at other similarly focused BUT faculties or other university faculties. Other requirements: interest in engineering and scientific work, knowledge of English and good results in the previous study (better than average grade of 2). We expect knowledge of basic chemical, physical and physically-chemical concepts and principles to the extent specified for the comprehensive MA exam in chemistry, physics and physical chemistry at the Faculty of Chemistry of the Brno University of Technology, eventually at other similarly focused BUT faculties or other university faculties. Other requirements: interest in engineering and scientific work, knowledge of English and good results in the previous study (better than average grade of 2). The knowledge of general chemical, physical and physico-chemical concepts and laws of the extent provided for in the comprehensive master's examination of chemistry, physics and physical chemistry at the Brno University of Technology eventually. other similar focus BUT faculties and university faculties directions. Other assumptions are: interest in engineering and scientific work, knowledge of English and good academic performance in previous studies (better than average grade 2).
Guarantor
prof. Ing. Martin Weiter, Ph.D.
Issued topics of Doctoral Study Program
The work will deal with the preparation and characterization of materials - organic semiconductors, which are perspective for use in the field of organic photovoltaics. Organic solar cells will be prepared and characterized by methods of material printing and other methods and their properties will be studied. Attention will be focused on characterization of optical and electrical properties of materials and solar cells. The aim is to optimize the properties of solar cells with respect to their specific application possibilities. It is expected that the PhD student will be involved in an international research project focusing on organic photovoltaics.
Tutor: Weiter Martin, prof. Ing., Ph.D.
The work will deal with preparation and characterization of new organic materials, which are prospective for use in bioelectronics. Attention will be focused primarily on the characterization of the optical and electrical properties of materials prepared in the form of thin films. The possibilities of using materials in thin-film sensory systems to stimulate cells and study their response will be studied.
The thesis will deal with the preparation and characterization of perovskites and perovskite hybrid structures, which are prospective for use in photonics with emphasis on photovoltaics, photosensors and electroluminescence devices. Attention will be focused primarily on the characterization of the optical and electrical properties of perovskite crystals and materials prepared in the form of thin films.
Responsibility: Miroslav Lapčík