Detail předmětu
Modelování s využitím CFD I
FSI-K10Ak. rok: 2010/2011
Obsahová anotace:
Předmět poskytuje seznámení s numerickými metodami analýzy proudění tekutin (CFD - Computational Fluid Dynamics - výpočtová dynamika tekutin). Jde o první část dvousemestrálního kurzu o modelování s využitím CFD metod. Studenti se ve výuce seznámí s teoretickými základy dynamiky tekutin (odvození a klasifikace řídících rovnic), dále s metodami převodu těchto rovnic na numerické metody používané v počítačových simulacích (tj. metodami diskretizace parciálních diferenciálních rovnic), s modelováním turbulentního proudění a dalších vybraných fyzikálních jevů a konečně s algoritmy numerického řešení. Uživatelé komerčních CFD programů potřebují mít dobré povědomí o tom, jak tyto programy pracují, aby je dokázali efektivně využívat. Porozumění základním řídícím rovnicím a numerickým metodám jejich řešení je důležitým předpokladem onoho efektivního využití. Po absolvování tohoto kurzu by studenti měli mít tyto základní vědomosti.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- Základní přehled o modelování vybraných fyzikálních jevů souvisejících s prouděním tekutin
- Schopnost odvozovat diskretizované rovnice
- Přehled o numerickém řešení rovnic dynamiky tekutin používaném v komerčních CFD programech
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
- Seznámení se základy dynamiky tekutin
- Seznámení s principy numerického řešení řídících rovnic dynamiky tekutin
- Teoretická příprava pro druhou část kurzu (Modelování s využitím CFD II)
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Patankar S.V. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, 1980
Versteeg, H.K., and Malalasekera, W. An introduction to computational fluid dynamics: The finite volume method. Longman Group Ltd., 1995
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. týden: Fyzikální význam divergence vektoru rychlosti; odvození rovnice kontinuity – modely A-C
3. týden: Odvození rovnice kontinuity – model D; integrální a diferenciální formy řídících rovnic; odvození Navier-Stokesovy rovnice
4. týden: Odvození energiové rovnice v nekonzervativní formě; vyjádření energiové rovnice pro vnitřní energii tekutiny
5. týden: Energiová rovnice pro stlačitelné tekutiny; konzervativní forma; uzavřený systém rovnic dynamiky tekutin; zobecněná rovnice přenosu
6. týden: Matematické vlastnosti parciálních diferenciálních rovnic (PDR) a jejich vliv na CFD
7. týden: Fyzikální chování různých druhů PDR; okrajové a počáteční podmínky
8. týden: Turbulence a její modelování – co je to turbulence, vliv na rovnice proudění, klasifikace modelů turbulence
9. týden: Nejpoužívanější modely turbulence; turbulence v blízkosti stěn; úvod do metody konečných objemů (MKO)
10. týden: MKO pro difúzní úlohy; použití MKO – příklad 1D vedení tepla se zobecněním na 2D a 3D; centrální diference
11. týden: MKO pro smíšené úlohy konvekce-difúze; příklad 1D konvekce s difúzí a centrálním diferencováním
12. týden: Vlastnosti diskretizačních schémat; schéma „upwind“, hybridní schéma, schéma „power-law“, schéma „quick“, schémata vyšších řádů
13. týden: Algoritmy řešení pro tlak a rychlost v ustáleném proudění; vystřídané uspořádání mřížky („staggered grid“); algoritmy SIMPLE, PISO; řešení neustálených úloh