Detail předmětu
Matematická analýza III
FSI-SA3Ak. rok: 2010/2011
Předmět Matematická analýza III seznámí studenty oboru Matematické inženýrství se základy teorie nekonečných řad a obyčejných diferenciálních rovnic. Znalost teorie diferenciálních rovnic a metod jejich řešení je nezbytným předpokladem a nepostradatelným základem nejen pro další studium matematiky, ale i pro fyzikální a technické disciplíny. Nekonečné řady jsou důležitým prostředkem pro nejrůznější matematické a fyzikální výpočty, a mají četné praktické využití. Předmět zahrnuje následující témata:
Číselné řady. Funkční řady. Mocninné řady.
Taylorovy řady a rozvoje funkcí v Taylorovy řady. Fourierovy řady a rozvoje funkcí ve Fourierovy řady.
Obyčejné diferenciální rovnice. Diferenciální rovnice prvního řádu.
Lineární diferenciální rovnice vyšších řádů. Soustavy lineárních diferenciálních rovnic prvního řádu. Teorie stability.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
řešení obyčejných diferenciálních rovnic prvního i vyšších řádů, včetně
lineárních systémů. Dále jsou seznámeni
s kritérii konvergence řad, odhady zbytků řad a metodami rozvoje
funkcí do mocninných a Fourierových řad.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
podmínek průběžné kontroly znalostí. Získání minimálně poloviny všech možných bodů
z kontrolní práce, která se koná ve dvanáctém výukovém týdnu. Pokud student tuto podmínku
nesplní, lze v odůvodněných případech stanovit podmínku náhradní.
Zkouška: Zkouška prověřuje znalosti definic a vět (zejména schopnost
jejich užití na vybraných úlohách) a praktickou dovednost při řešení
příkladů. Zkouška je písemná (příp. i ústní). Do klasifikačního hodnocení
se zahrnuje výsledek písemné zkoušky.
V odůvodněných případech lze přihlédnout také k výsledkům kontrolních
prací v teoretickém cvičení.
Klasifikační hodnocení studenta: výborně (90-100 bodů), velmi dobře
(80-89 bodů), dobře (70-79 bodů), uspokojivě (60-69 bodů), dostatečně (50-59 bodů), nevyhovující (0-49 bodů). Bodové hodnocení může být modifikováno, avšak při zachování výše uvedených poměrů.
Učební cíle
obyčejných diferenciálních rovnic a teorie nekonečných řad. Úkolem
je naučit studenty elementární metody řešení diferenciálních rovnic
a jejich systémů a seznámit je s využitím nekonečných řad.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Fichtengolc, G.M.: Kurs differencialnogo i integralnogo isčislenija, tom III, Moskva, 1966.
Hartman, P.: Ordinary differential equations, New York, 1964.
Doporučená literatura
Čermák, J.: Sbírka příkladů z Matematické analýzy III a IV, Brno, 1998.
Kalas, J., Ráb, M.: Obyčejné diferenciální rovnice, Brno, 1995.
Ženíšek, A.: Vybrané kapitoly z matematické analýzy, Brno, 1997.
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Funkční řady. Bodová a stejnoměrná konvergence.
3. Mocninné řady. Poloměr konvergence. Vlastnosti mocninných řad.
4. Taylorovy řady a rozvoje funkcí v Taylorovy řady.
5. Fourierovy řady. Otázky konvergence a rozvoje funkcí.
6. ODR. Základní pojmy. Druhy řešení. Počáteční a okrajový problém.
7. Analytické metody řešení ODR 1. řádu. Otázka existence a jednoznačnosti řešení.
8. ODR vyššího řádu. Vlastnosti řešení lineárních ODR vyššího řádu.
9. Metody řešení lineárních ODR vyššího řádu.
10. Okrajový problém pro ODR 2. řádu.
11. Soustavy ODR 1. řádu. Vlastnosti řešení lineárních soustav ODR 1. řádu.
12. Metody řešení lineárních soustav ODR 1. řádu.
13. Stabilita řešení ODR a jejich soustav.
Cvičení
Vyučující / Lektor
Osnova
2. Číselné řady.
3. Funkční řady.
4. Mocninné řady.
5. Taylorovy řady.
6. Fourierovy řady.
7. Analytické metody řešení ODR 1. řádu.
8. Aplikace ODR1.
9. Homogenní lineární ODR vyššího řádu.
10. Nehomogenní lineární ODR vyššího řádu.
11. Aplikace lineárních ODR vyššího řádu.
12. Homogenní soustavy lineárních ODR 1. řádu.
13. Nehomogenní soustavy lineárních ODR 1. řádu.