Detail předmětu

Pokročilé metody v rozhodování

FP-IpmrPAk. rok: 2011/2012

Cílem výše uvedeného předmětu je seznámení se s některými nestandardními pokročilými metodami analýz a technikami modelování za účelem podpory rozhodování v podnikatelství formou vysvětlení si principu těchto teorií, naučit se pracovat s těmito teoriemi a jejich aplikací.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Získané znalosti a dovednosti předmětu umožní absolventům kvalitní a moderní přístup při procesech analýz a modelování v národním hospodářství a soukromém sektoru, organizacích, podnicích, firmách, společnostech, bankách, atd. zejména v manažerské, ale i ekonomické a finanční sféře.

Prerekvizity

Znalosti z oblasti matematiky (lineární algebra, vektory, analýza funkcí, operace s maticemi) statistiky (analýza časových řad, regresní analýza, užití statistických metod v ekonomii), operační analýzy (základní metody optimalizace, lineární programování), finanční analýzy a plánování (analýza zisku a nákladů, cash flow, bonitní a bankrotní model).

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

K udělení zápočtu bude požadována aktivní účast na cvičeních, odevzdání závěrečné písemné práce, popř. písemný test. Rozsah seminární práce bude činit cca 8 -12 stránek s individuálním zaměřením studenta na problematiku z praxe, vedoucí k řešení za pomoci teorie fuzzy logiky, umělých neuronových sítí nebo genetických algoritmů.

Osnovy výuky

1.Fuzzy logika (FL): Seznámení se s základními pojmy a pravidly fuzzy logiky, tvorbou modelů. Uvedení příkladů aplikací fuzzy logiky v rozhodování, jako je např. manažerské a investiční rozhodování, predikce atd.
2.Umělé neuronové sítě (UNS): Seznámení se s základními pojmy v oblasti umělých neuronových sítí, uvedení pojmu perceptron, vícevrstvá neuronová síť a jejich parametrů. Aplikace zahrnuje investiční rozhodování, odhady cen výrobků a množstevní odhady, odhad cen nemovitostí, oceňování bonity klienta atd.
3.Genetické algoritmy (GA): Seznámení se základy genetiky, analogií mezi přírodou a matematickým popisem, umožňující řešení problémů rozhodování. Je uvedeno použití v oblasti optimalizace široké palety problémů – optimalizace investiční strategie, řízení výroby, řezných plánů, aproximace křivek, řešení problému obchodního cestujícího, využití shlukové analýzy apod.
4.Teorie chaosu: Teorie pojednává o možnosti lepšího popisu ekonomických jevů než je tomu u klasických metod. Je objasněn pojem chaos a řád, fraktál, uvedeno využití této teorie při určení míry chaosu u měřeného sledovaného systému.
5.Datamining: Uvedení pojmu co znamená datamining, definování cílů, výběr techniky modelování, zdroje a příprava dat, tvorba modelů, jejich ověření, vyhodnocení, implementace a údržba. Uvedení příkladů použití pro volbu strategie spolupráce se zákazníkem, direkt mailing apod.
6.Modelování: Uvedení pojmu systém a jeho identifikaci a simulaci. Popis využití FL, UNS a GA při simulaci rozhodovacích procesů v podnikatelství.

Učební cíle

Seznámení studentů s vybranými pokročilými metodami analýz a technikami modelování (fuzzy logika, umělé neuronové sítě, genetické algoritmy) formou vysvětlení principů těchto teorií a jejich následných aplikací do manažerské praxe.

Základní literatura

DOSTÁL, P.: Advanced Decision making in Business and Public Services, Akademické nakladatelství CERM, 2011 Brno,ISBN 978-80-7204-747-5. (EN)
DOSTÁL, P. Pokročilé metody analýz a modelování v podnikatelství a veřejné správě, CERM, 2008, 430s, ISBN 978-80-7204-605-8. (CS)
DOSTÁL, P, RAIS, K., SOJKA, Z.: Pokročilé metody manažerského rozhodování, Praha Grada, 2005., ISBN 80-247-1338-1. (CS)
THE MATHWORKS. MATLAB – User’s Guide, The MathWorks, Inc., 2021. (EN)

Doporučená literatura

ALTROCK,C. Fuzzy Logic &Neurofuzzy, Book & Cd Edition, 1996, 375 s., ISBN 0-13-591512-0 (EN)
DAVIS,L. Handbook of Genetic Algorithms, Int. Thomson Com. Press, 1991, 385 s., ISBN 1-850-32825-0 (EN)
GATELY, E. Neural Network for Financial Forecasting, John Wiley & Sons Inc., 1996, 169 s., ISBN 0-471-11212-7 (EN)
JANÍČEK, P. Systémové pojetí vybraných oborů pro techniky, CERM, Brno, 2007, 1234 s., ISBN 978-80-7204-554-9. (CS)
PETERS, E. Fractal Market Analysis, John Wiley & Sons Inc., 1994, 315 s., SBN 0-471-58524-6 (EN)
REBEIRO,R.R., ZIMMERMANN,H.J. Soft Computing in Fin. Engineering, Spring Verlag Comp.,1999,509s.,ISBN3-7908-1173-4. (EN)

Zařazení předmětu ve studijních plánech

  • Program MGR-SI magisterský navazující

    obor MGR-IM , 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení

26 hod., povinná

Vyučující / Lektor