Detail předmětu
Pravděpodobnost a statistika I
FSI-S1PAk. rok: 2011/2012
Předmět je zaměřen na seznámení studentů se základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor), matematické statistiky (popisná statistika, náhodný výběr, odhady parametrů, testování statistických hypotéz) a se statistickým softwarem Statistica. Úlohy na procvičení látky jsou orientovány na praktické aplikace zejména ve strojírenskéch oborech.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Zkouška: písemná forma; praktická část (2 příklady z partií teorie
pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení pravděpodobnosti Bi, H, Po, N, náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech) teoretická část (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití a důkazy dvou vět); hodnocení: každý příklad 0 až 20 bodů a každá teoretická otázka 0 až 5 bodů; klasifikace podle celkového součtu bodů (0 bodů u některého příkladu nebo celé teoretické části znamená celkově 0 bodů): výborně (90 až 100 bodů a oba důkazy), velmi dobře (80 až 89 bodů a jeden důkaz), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů).
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Montgomery, D. C. - Runger, G.: Applied Statistics and Probability for Engineers, John Wiley & Sons, New York. 1994. (EN)
Zvára, K., Štěpán, J.: Pravděpodobnost a matematická statistika. Praha : Matfyzpress, 2002. (CS)
Doporučená literatura
Lamoš, F. - Potocký, R.: Pravdepodobnosť a matematická štatistika. Bratislava : Alfa, 1989.
Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha : PLUS, 1994.
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Podmíněná pravděpodobnost a nezávislé jevy (vlastnosti).
Spolehlivost systémů. Náhodná veličina (druhy, distribuční funkce).
Funkční charakteristiky diskrétních a spojitých náhodných veličin.
Číselné charakteristiky diskrétních a spojitých náhodných veličin.
Základní diskrétní rozdělení K, Bi, H, Po (vlastnosti a užití).
Základní spojitá rozdělení R, N, E (vlastnosti a užití).
Náhodný vektor, druhy, funkční a číselné charakteristiky.
Rozdělení transformovaných náhodných veličin.
Zákon velkých čísel, centrální limitní věta.
Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
Odhady parametrů (bodové a intervalové odhady parametrů Bi a N).
Testování statistických hypotéz.
Testy hypotéz o parametrech Bi a N.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
Popisná statistika (dvourozměrný statistický soubor). Kombinatorika.
Pravděpodobnost (vlastnosti a výpočty). Zadání semestrální práce.
Podmíněná pravděpodobnost. Nezávislé jevy.
Písemná práce (3 příklady). Funkční a číselné charakteristiky náhodné veličiny.
Funkční a číselné charakteristiky náhodné veličiny - dokončení.
Základní rozdělení (Bi, H, Po, R, N, E), aproximace.
Náhodný vektor, funkční a číselné charakteristiky.
Písemná práce (3 příklady).
Bodové a intervalové odhady parametrů Bi a N.
Testy hypotéz o parametrech Bi a N.
Testy hypotéz o parametrech Bi a N - dokončení. Testy rozdělení.
Regresní přímka, odhady, testy a grafy. Hodnocení semestrální práce.