Detail předmětu

Matematika III-B

FSI-CM-KAk. rok: 2011/2012

Předmět je zaměřen na seznámení studentů se základními metodami řešení obyčejných diferenciálních rovnic a úloh matematické statistiky.
Znalost základní teorie diferenciálních rovnic a metod jejich řešení je nezbytným základem pro studium fyzikálních a technických disciplín, souvisejících především s mechanikou.
Statistické metody jsou zaměřeny na popisnou statistiku, náhodné jevy, pravděpodobnost, náhodnou veličiny a vektory, náhodný výběr, odhady parametrů a testování statistických hypotéz. Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech.

Jazyk výuky

čeština

Počet kreditů

4

Zajišťuje ústav

Výsledky učení předmětu

Studenti získají potřebné znalosti z obyčejných diferenciálních rovnic a matematické statistiky, které jim umožní pochopit a aplikovat deterministické a stochastické modely technických jevů a procesů, založené na těchto metodách.

Prerekvizity

Základy diferenciálního a integrálního počtu.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky. Zkouška (písemná forma): praktická část (2 příklady z obyčejných diferenciálních rovnic; 2 příklady z pravděpodobnosti a matematické statistiky) s vlastním přehledem vzorců; teoretická část (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití); hodnocení: každý příklad 0 až 20 bodů a každá teoretická otázka 0 až 5 bodů; klasifikace podle celkového součtu bodů: výborně (90 až 100 bodů), velmi dobře (80 až 89 bodů), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů).

Učební cíle

Seznámení studentů se základními pojmy, metodami a postupy řešení obyčejných diferenciálních rovnic a matematické statistiky. Formování způsobu myšlení studentů při modelování reálných jevů a procesů ve strojírenských oborech.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je doporučená, účast na cvičeních je kontrolovaná. Výuka probíhá dle týdenních plánů rozvrhů. Stanovení způsobů náhrady zmeškané výuky je v kompetenci vedoucího cvičení.

Základní literatura

Hartman, P.: Ordinary Differential Equations. New York: John Wiley & Sons, 1964.
Montgomery, D. C. - Renger, G.: Probability and Statistics. New York : John Wiley & Sons, Inc.,1996.
Sprinthall, R. C.: Basic Statistical Analysis. Boston : Allyn and Bacon, 1997.

Doporučená literatura

Čermák,J.- Ženíšek, A.: Matematika III. Brno: FSI VUT V Akademickém nakladatelství CERM Brno, 2001
Karpíšek, Z.: Matematika IV - Statistika a pravděpodobnost. 2. vydání. Brno : FSI VUT v Akademickém nakladatelství CERM Brno, 2003.
Karpíšek, Z. – Popela, P. – Bednář, J.: Statistika a pravděpodobnost. Učební pomůcka - studijní opora pro kombinované studium. Brno : FSI VUT v Akademickém nakladatelství CERM Brno, 2002.

Zařazení předmětu ve studijních plánech

  • Program B3S-K bakalářský

    obor B-AIŘ , 2 ročník, zimní semestr, povinný
    obor B-SSZ , 2 ročník, zimní semestr, povinný
    obor B-STG , 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Konzultace

13 hod., nepovinná

Vyučující / Lektor

Osnova

1. ODR. Základní pojmy. Existence a jednoznačnost řešení.
2. Analytické metody řešení ODR 1. řádu.
3. ODR vyššího řádu. Vlastnosti a metody řešení homegenní lineární ODR vyššího řádu.
4. Vlastnosti a metody řešení nehomogenní lineární ODR vyššího řádu.
5. Soustavy ODR 1. řádu. Vlastnosti a metody řešení homogenních lineárních soustav 1. řádu.
6. Vlastnosti a metody řešení nehomogenních lineárních soustav 1. řádu
7. Okrajový problém pro ODR 2. řádu.
8. Popisná statistika.
9. Náhodné jevy a pravděpodobnost.
10. Náhodná veličina a vektor, funkční a číselné charakteristiky.
11. Základní rozdělení pravděpodobnosti (Bi, H, Po, N), vlastnosti a užití.
12. Náhodný výběr, odhady parametrů (Bi, N).
13. Testování statistických hypotéz o parametrech (Bi, N).