Detail předmětu

Deskriptivní geometrie

FAST-BA03Ak. rok: 2011/2012

Perspektivní kolineace, perspektivní afinita, křivka afinní ke kružnici. Mongeovo promítání. Axonometrická promítání. Lineární perspektiva. Základní pojmy z teorie křivek a ploch - šroubovice, pravoúhlá uzavřená přímková šroubová plocha. Zborcené plochy.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Ústav matematiky a deskriptivní geometrie (MAT)

Výsledky učení předmětu

Student zvládne konstrukci kuželoseček, základy stereometrie, perspektivní afinity, perspektivní kolineace, základy promítání: Mongeova, axonometrie a lineární perspektivy. Zvládne zobrazení jednoduchých geometrických těles a ploch v jednotlivých projekcích, jejich řezy. V lineární perspektivě zvládne zobrazení stavebního objektu. Zvládne konstrukci šroubovice, konstrukci pravoúhlé uzavřené přímkové šroubové plochy, konstrukci některých ploch stavebně technické praxe.

Prerekvizity

Základní poznatky z rovinné geometrie a stereometrie v rozsahu střední školy.

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Osnovy výuky

Přednášky.
1.Rozšířený euklidovský prostor. Dělící poměr. Princip promítání středového a rovnoběžného. Perspektivní kolineace, perspektivní afinita.
2. Systém základních úloh, užití na příkladech. Mongeovo promítání.
3. Mongeovo promítání.
4. Mongeovo promítání.
5. Axonometrická zobrazení.
6. Axonometrická zobrazení.
7. Úvod do středového promítání. Lineární perspektiva.
8. Lineární perspektiva.
9. Lineární perspektiva.
10. Prostorová křivka. Šroubovice. Úvod do teorie ploch.
11. Přímý šroubový konoid. Zborcené plochy. Zborcené plochy druhého stupně. Zborcený hyperboloid.
12. Hyperbolický paraboloid. Plochy stavebně - technické praxe.
13. Rezerva.

Cvičení.
1. Ohniskové vlastnosti kuželoseček.
2. Perspektivní kolineace, perspektivní afinita. Křivka afinní ke kružnici.
3. Konstrukce elipsy založené na afinitě. Mongeova projekce.
4. Mongeova projekce.
5. Mongeova projekce.
6. Kontrolní práce. Kolmá axonometrie.
7. Kolmá axonometrie. Šikmé promítání.
8. Lineární perspektiva.
9. Lineární perspektiva.
10. Lineární perspektiva.
11. Kontrolní práce. Šroubovice. Šroubový konoid.
12. Plochy stavebně - technické praxe.
13. Zápočty.

Učební cíle

Zvládnout konstrukci kuželoseček na základě ohniskových vlastností. Pochopit principy perspektivní kolineace a perspektivní afinity a umět je použít při řešení příkladů. Pochopit a zvládnout základy promítání: Mongeova, axonometrie a lineární perspektivy. Rozvinout prostorovou představivost a zvládnout prostorové řešení jednoduchých úloh. Umět zobrazit jednoduchá geometrická tělesa a plochy v jednotlivých projekcích, jejich řezy. V lineární perspektivě zvládnout zobrazení stavebního objektu. Seznámit se se stručným výběrem poznatků z teorie křivek a ploch, umět konstrukci šroubovice ze zadaných prvků a konstrukci pravoúhlé uzavřené přímkové šroubové plochy. Seznámit se se stručným výběrem z teorie zborcených ploch, umět konstrukci hyperbolického paraboloidu a některých dalších ploch stavebně-technické praxe.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

Jaroslav Černý: Descriptive geometry. ČVUT, Praha, 1996. (EN)
R. Piska, V. Medek: Deskriptivní geometrie I, II. SNTL, 1976. (CS)

Doporučená literatura

HOLÁŇ, Š., HOLÁŇOVÁ, L.: Cvičení z deskr.geometrie II,III. VUT Brno, 1994. (CS)
Pare, Loving, Hill: Descriptive geometry. London, 1965. (EN)
VALA, J.: Deskriptivní geometrie I,II. VUT Brno, 1997. (CS)

Zařazení předmětu ve studijních plánech

  • Program B-K-C-SI bakalářský

    obor VS , 1 ročník, letní semestr, povinný

  • Program B-P-C-SI bakalářský

    obor VS , 1 ročník, letní semestr, povinný

  • Program B-P-C-ST bakalářský

    obor VS , 1 ročník, letní semestr, povinný

  • Program B-P-E-SI bakalářský

    obor VS , 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení

26 hod., povinná

Vyučující / Lektor