Detail předmětu

Fuzzy systémy

FEKT-MFSYAk. rok: 2012/2013

Motivace předmětu, klasické množiny a fuzzy množiny. Operace nad fuzzy množinami, t-normy a konormy. Fuzzy relace a operace nad nimi. Projekce, cylindrické rozšíření, kompozice. Přibližné usuzování. Jazyková proměnná. Fuzzy implikace. Zobecněný modus ponens a fuzzy pravidlo if-then. Pravidla inference. Ohodnocení a vlastnosti souboru fuzzy pravidel. Fuzzy systémy typu Mamdani a Sugeno. Struktura fuzzy systému, znalostní a datová báze. Fuzzifikace a defuzzifikační metody. Fuzzy systém jako universální aproximátor. Adaptace ve fuzzy systémech, neuro-fuzzy systémy.

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

Absolvent předmětu je vybaven základními znalostmi a dovednostmi z fuzzy problematiky. Umí je aplikovat v oblasti modelování a řízení systémů za přítomnosti neurčitě vyjádřené vstupní a výstupní informace.

Prerekvizity

Základní znalosti ze signálů, systémů a lineární teorie řízení

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Písemný test 15 bodů
Projekt 20 bodů
Závěrečný písemný test 65 bodů

Osnovy výuky

Motivace předmětu, klasické množiny a fuzzy množiny.
Operace nad fuzzy množinami.
t-normy a konormy.
Fuzzy relace a operace nad nimi. Projekce, cylindrické rozšíření, kompozice.
Přibližné usuzování. Jazyková proměnná. Fuzzy implikace.
Zobecněný modus ponens a fuzzy pravidlo if-then. Pravidla inference.
Ohodnocení a vlastnosti souboru fuzzy pravidel.
Fuzzy systémy typu Mamdani a Sugeno.
Struktura fuzzy systému, znalostní a datová báze.
Fuzzifikace a defuzzifikační metody.
Fuzzy systém jako universální aproximátor.
Adaptace ve fuzzy systémech.
Neuro-fuzzy systémy.

Učební cíle

Seznámit se se základy teorie fuzzy množin a fuzzy logiky.
Naučit se aplikovat fuzzy teorii při modelováni neurčitých systémů. Seznámit se s adaptačními technikami ve fuzzy systémech.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

Jura P.: Základy fuzzy logiky pro řízení a modelování, VUTIUM, Brno 2003, ISBN 80-214-2261-0 (CS)

Zařazení předmětu ve studijních plánech

  • Program EEKR-M magisterský navazující

    obor M-KAM , 1 ročník, letní semestr, volitelný oborový

  • Program EEKR-M1 magisterský navazující

    obor M1-KAM , 1 ročník, letní semestr, volitelný oborový

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1 ročník, letní semestr, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Motivace předmětu, klasické množiny a fuzzy množiny.
Operace nad fuzzy množinami.
t-normy a konormy.
Fuzzy relace a operace nad nimi. Projekce, cylindrické rozšíření, kompozice.
Přibližné usuzování. Jazyková proměnná. Fuzzy implikace.
Zobecněný modus ponens a fuzzy pravidlo if-then. Pravidla inference.
Ohodnocení a vlastnosti souboru fuzzy pravidel.
Fuzzy systémy typu Mamdani a Sugeno.
Struktura fuzzy systému, znalostní a datová báze.
Fuzzifikace a defuzzifikační metody.
Fuzzy systém jako universální aproximátor.
Adaptace ve fuzzy systémech.
Neuro-fuzzy systémy.

Cvičení na počítači

13 hod., povinná

Vyučující / Lektor

Osnova

Seznámení se s výukovým programem pro fuzzy logiku. Absolvování testů výukového programu.
Seznámení se s Fuzzy toolbox Matlab. Demonstrační úlohy v prostředí Fuzzy toolbox Matlab. Samostatné vyřešení jednoduché úlohy. Zadání projektu a jeho samostatné řešení.