Detail předmětu

Optimalizace regulátorů

FEKT-MOPRAk. rok: 2012/2013

Kurs je zaměřen na výběr vhodného typu regulátoru s optimalizací jeho struktury a parametrů s ohledem na požadované vlastnosti regulačního obvodu.

Zabývá se klasickými i moderními metodami návrhů řídicích algoritmů (adaptivní, optimální a prediktivní přístupy) včetně použití principů umělé inteligence (fuzzy regulátory a neuronové sítě) v řídicích algoritmech.

Posluchač kurzu se seznámí s různými přístupy používanými při teoretickém a zejména praktickém řešení problémů vznikajících při návrhu složitějších řídicích algoritmů.

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

Seznámení se s různými přístupy používanými při teoretickém a zejména praktickém řešení problémů vznikajících při návrhu řídicích algoritmů.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Cvičení. Individuální projekt. Max. 30 bodů.
Kombinovaná zkouška. Max. 70 bodů.

Osnovy výuky

Přednáška
Fyzikální podstata řízení
Diskrétní PID regulátory a jejich varianty jako základní referenční regulátory
Metody adaptivního řízení, identifikace parametrů ARX modelu
Automaticky se nastavující regulátor (STC)
Optimální řízení
Stavový regulátor
Diskrétní kvadraticky optimální řízení, LQG metoda návrhu regulátoru
Základy fuzzy logiky, fuzzy regulátory
Umělé neuronové sítě, metody učení NS
Identifikace systémů pomocí neuronových sítí
Adaptivní optimální regulátor s identifikací pomocí NS (kvantizační efekt)
Řídicí algoritmy na bázi neuronových sítí
Prediktivní a zpětnovazební strategie řízení, návrh prediktivního LQ regulátoru
Spojitá a diskrétní filtrace signálu
Optimální filtrace systému (Kalmanův filtr)

Cvičení na poč.
Seznámení s pracovištěm a s Automation studiem pro přímou implementaci řídicích algoritmů v reálném čase ve spojení MATLAB/Simulink – PLC B&R – fyzikální modely
Seznámení s použitím S-funkcí v MATLABu
PID regulátor, jeho varianty, optimalizace nastavení
Identifikace parametrů ARX modelu v reálném čase
Zadání samostatného projektu
Realizace automaticky se nastavujícího regulátoru
Návrh LQ regulátoru
Metody řešení algoritmu LQ regulátoru
Ověření vlastností fuzzy regulátorů
Ověření vlastností neuronových sítí v identifikaci a řízení
Ověření vlastností prediktivního regulátoru
Realizace a ověření spojitých a diskrétních filtrů
Návrh a ověření Kalmanova filtru
Zhodnocení výsledků, zápočet

Učební cíle

Cílem předmětu je naučit se formulovat inženýrský problém jako optimalizační úlohu, nalézt řešení a správně je interpretovat. Tento postup bude průběžně popsán klasickými i moderními metodami používanými v teorii automatického řízení.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program EEKR-M magisterský navazující

    obor M-KAM , 1 ročník, zimní semestr, volitelný oborový

  • Program EEKR-M1 magisterský navazující

    obor M1-KAM , 1 ročník, zimní semestr, volitelný oborový

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1 ročník, zimní semestr, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Fyzikální podstata řízení
Diskrétní PID regulátory a jejich varianty jako základní referenční regulátory
Metody adaptivního řízení, identifikace parametrů ARX modelu
Automaticky se nastavující regulátor (STC)
Optimální řízení
Stavový regulátor
Diskrétní kvadraticky optimální řízení, LQG metoda návrhu regulátoru
Základy fuzzy logiky, fuzzy regulátory
Umělé neuronové sítě, metody učení NS
Identifikace systémů pomocí neuronových sítí
Adaptivní optimální regulátor s identifikací pomocí NS (kvantizační efekt)
Řídicí algoritmy na bázi neuronových sítí
Prediktivní a zpětnovazební strategie řízení, návrh prediktivního LQ regulátoru
Spojitá a diskrétní filtrace signálu

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

Seznámení s pracovištěm a s Automation studiem pro přímou implementaci řídicích algoritmů v reálném čase ve spojení MATLAB/Simulink – PLC B&R – fyzikální modely
Seznámení s použitím S-funkcí v MATLABu
Realizace diskrétního regulátoru PID typu a jeho variant (PSD, I-PD, FF)
Identifikace parametrů ARX modelu v reálném čase
Zadání samostatného projektu
Realizace automaticky se nastavujícího regulátoru
Návrh LQ regulátoru
Metody řešení algoritmu LQ regulátoru
Ověření vlastností fuzzy regulátorů
Ověření vlastností neuronových sítí v identifikaci a řízení
Ověření vlastností prediktivního regulátoru
Realizace a ověření spojitých a diskrétních filtrů
Zhodnocení výsledků, zápočet