Detail předmětu
Umělá inteligence
FEKT-MUINAk. rok: 2012/2013
Kurz je zaměřen na prohloubení znalostí a aplikaci metod z oblasti umělé inteligence. Umělá inteligence - směry, definice. Neuronové sítě, paradigmata neuronovích sítí, metoda učení Back-Propagation, asociativní NS, RCE síť, Kohonenovy mapy. Princip expertních systémů. reprezentace znalostí, řěšení úloh. Počítačové vidění.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
Inteligence - biologický informační systém
Neuronové sítě - úvod, biologické poznatky o neuronech a neuronových sítí.
Teorie umělých neuronových sítí, modelování a vlastnosti neuronových sítí, paradigmata.
Perceptron
Vicevrstvá neuronová síť, metoda učení Back-Propagation, modifikované algoritmy metody BP
Kohonenovy samoorganizační mapy
Hopfieldova síť
RCE síť
Znalostní systémy
Expertní systémy, struktura a činnost ES, inferenční mechanismus.
ES - reprezentace znalostí, řešení úloh
Inteligentní robot
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Zařazení předmětu ve studijních plánech
- Program EEKR-M magisterský navazující
obor M-EEN , 2 ročník, zimní semestr, volitelný mimooborový
obor M-TIT , 1 ročník, zimní semestr, volitelný mimooborový
obor M-KAM , 2 ročník, zimní semestr, povinný - Program EEKR-M1 magisterský navazující
obor M1-EEN , 2 ročník, zimní semestr, volitelný mimooborový
obor M1-TIT , 1 ročník, zimní semestr, volitelný mimooborový
obor M1-KAM , 2 ročník, zimní semestr, povinný - Program EEKR-CZV celoživotní vzdělávání (není studentem)
obor ET-CZV , 1 ročník, zimní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Neuronové sítě, biologické poznatky o neuronech
Modely neuronu a paradigmata neuronovích sítí
Vrstevnaté NS, Metoda Back-Propagation, Modifikované algoritmy metody BP
Asociativní NS, RCE síť, Kohonenovy mapy
Princip expertních systémů, teoretické zdroje ES.
Reprezentace znalostí - logika, produkční pravidla.
Reprezentace znalostí - sémantické sítě, rámce.
Řěšení úloh - typy úloh, nedeterminismus, heuristika.
Řešení úloh - metody řešení úloh.
Řešení úloh - metody inference pro ES.
Rozpoznávání řeči - zpracování, modelování a syntéza řeči.
Rozpoznávání řeči - metody rozpoznávání, hlasové ovládání technických zařízení.
Cvičení na počítači
Vyučující / Lektor
Osnova
Modelování algoritmu BackPropagation 1
Neuronové sítě v modelování 2
Modelování dynamických systémů pomocí neuronových sítí.
Citlivostní analýza NS typu Backpropagation.
Klasifikace pomocí NS.
Aplikace expertních systémů.