Detail předmětu
Deskriptivní geometrie
FAST-AA02Ak. rok: 2014/2015
Kolmá axonometrie, kosoúhlá axonometrie, kosoúhlé promítání. Lineární perspektiva, základy fotogrammetrie. Šroubovice, šroubová plocha rozvinutelná, pravoúhlá uzavřená přímková šroubová plocha . Rotační plochy. Zborcené plochy. Osvětlení. Teoretické řešení střech. Úvod do topografických ploch.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Informace jsou předávány formou přednášek a procvičovány ve cvičení. Student má možnost využít konzultací. Součástí studijních činností studenta je zadávaná práce.
Způsob a kritéria hodnocení
Následuje zkouška splněná na alespoň 50%.
Osnovy výuky
2. Rotační plochy, řezy rotačních ploch.
3. Osvětlení rotačních ploch.
4. Axonometrie – klasifikace, základní pojmy.
5. Kolmá axonometrie.
6. Kosoúhlá axonometrie, kosoúhlé promítání. Zářezová metoda.
7. Lineární perspektiva.
8. Lineární perspektiva.
9. Základy fotogrammetrie. Rekonstrukce ze svislého snímku.
10.Zborcené kvadriky. Hyperbolický paraboloid. Jednodílný hyperboloid.
11. Zborcené plochy vyššího stupně.Teoretické řešení střech.
12. Šroubovice, rozvinutelná plocha šroubová, šroubový konoid.
13. Topografické plochy.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Doporučené volitelné složky programu
Základní literatura
Piska, R., Medek, V.: Deskriptivní geometrie I.. SNTL Praha, Alfa Bratislava, 1975. (CS)
Piska, R., Medek, V.: Deskriptivní geometrie II.. SNTL Praha, Alfa Bratislava, 1975. (CS)
Doporučená literatura
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy o přímkových plochách (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy v kosoúhlém promítání (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafařík, J.: Technické osvětlení (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafářová, H.: Teoretické řešení střech (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Vala, J.: Deskriptivní geometrie I., II.. VUT Brno, 1997. (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Rotační plochy, řezy rotačních ploch.
3. Osvětlení rotačních ploch.
4. Axonometrie – klasifikace, základní pojmy.
5. Kolmá axonometrie.
6. Kosoúhlá axonometrie, kosoúhlé promítání. Zářezová metoda.
7. Lineární perspektiva.
8. Lineární perspektiva.
9. Základy fotogrammetrie. Rekonstrukce ze svislého snímku.
10.Zborcené kvadriky. Hyperbolický paraboloid. Jednodílný hyperboloid.
11. Zborcené plochy vyššího stupně.Teoretické řešení střech.
12. Šroubovice, rozvinutelná plocha šroubová, šroubový konoid.
13. Topografické plochy.
Cvičení
Vyučující / Lektor
Osnova
2. Průměty jednoduchých těles a ploch, jejich řezy a průsečíky s přímkou. Technické osvětlení.
3. Tečná rovina rotační plochy, řez rotační plochy.
4. Osvětlení rotační plochy.
5. Kolmá axonometrie. Metrické úlohy v souřadnicových rovinách.
6. Kolmá axonometrie. Zobrazení jednoduchých těles a ploch, jejich řezy a průsečíky s přímkou.
7. Vynášení v kosoúhlém promítání. Průmět kružnice v souřadnicové rovině. Zobrazení jednoduchých těles. Zářezová metoda.
8. Lineární perspektiva. Průsečná metoda. Konstrukce volné perspektivy.
9. Lineární perspektiva. Metoda sklopeného půdorysu. Další metody vynášení perspektivy.
10. Lineární perspektiva. Svislý snímek. Rekonstrukce objektu ze svislého snímku.
11. Zborcený hyperboloid, konstrukce. Hyperbolický paraboloid. Hyperbolický paraboloid daný zborceným čtyřúhelníkem. Zastřešení užitím hyperbolického paraboloidu.
12. Zborcené plochy vyššího stupně.Teoretické řešení střech.
13. Konstrukce šroubovice ze zadaných prvků. Přímý šroubový konoid. Zápočty.