Detail předmětu
Matematika
FAST-AA01Ak. rok: 2014/2015
Základní pojmy lineární algebry (matice, determinanty, soustavy lineárních algebraických rovnic). Některé pojmy vektorové algebry a jejich použití v analytické geometrii. Pojem funkce jedné reálné proměnné, limita, spojitost a derivace funkce. Některé elementární funkce, Taylorův polynom. Základy integrálního počtu funkce jedné reálné proměnné. Pravděpodobnost. Náhodné veličiny, jejich zákony rozdělení, číselné charakteristiky a základní typy rozdělení nahodných veličin. Statistické soubory, náhodný výběr, zpracování statistického materiálu.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Vektorová algebra.
Diferenciální a integrální počet funkce jedné proměnné.
Diferenciální počet funkcí více proměnných.
Pravděpodobnost a statistika.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Výsledné hodnocení (zkouška) je bodové (0-100 bodů), ze cvičení lze uznat maximálně 30 bodů. Závěrečná zkouška je písemná (hodnocení 0-70 bodů).
Osnovy výuky
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Daněček, J., Dlouhý, O., Přibyl, O.: Určitý integrál. FAST - studijní opora v intranetu, 2007. (CS)
Dlouhý, O., Tryhuk, V.: Reálná funkce dvou a více proměnných. FAST - studijní opora v intranetu, 2005. (CS)
Dlouhý, O., Tryhuk, V.: Reálná funkce jedné reálné proměnné. FAST - studijní opora v intranetu, 2008. (CS)
Larson R., Hostetler R.P., Edwards B.H.: Calculus (with analytic geometry). Brooks Cole, 2005. (EN)
Novotný, J.: Základy lineární algebry. FAST - studijní opora v intranetu, 2005. (CS)
Tryhuk, V., Dlouhý, O.: Vektorový počet a jeho aplikace. FAST - studijní opora v intranetu, 2007. (CS)
Doporučená literatura
Koutková, H., Dlouhý, O.: Sbírka příkladů z pravděpodobnosti a matematické statistiky. CERM Brno, 2008. (CS)
Koutková, H., Moll, I.: Základy pravděpodobnosti. CERM, 2008. (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
Cvičení
Vyučující / Lektor
Osnova
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.