Detail předmětu

Matematické metody v teorii proudění

FSI-SMMAk. rok: 2015/2016

Fyzikální základy mechaniky tekutin: zákony zachování hmoty, hybnosti a energie. Teoretické vyšetřování hyperbolických rovnic, speciálně Eulerových rovnic popisujících proudění nevazkých stlačitelných tekutin. Numerické modelování Eulerových rovnic užitím metody konečných objemů. Numerické modelování nestlačitelných tekutin: Navierovy-Stokesovy rovnice, metoda tlakových korekcí, metoda spektrálních prvků.

Jazyk výuky

čeština

Počet kreditů

4

Zajišťuje ústav

Výsledky učení předmětu

Studenti se seznámí se základními postupy modelování proudění tekutin: fyzikální zákony, matematická analýza rovnic popisujících proudění tekutin (Eulerovy a Navierovy-Stokesovy rovnice), volba vhodné numerické metody (která vychází z fyzikální a matematické podstaty rovnic) a počítačové modelování navržené numerické metody (preprocesing = tvorba sítě, numerický řešič, postprocesing = zobrazení žádáných fyzikálních veličin). Získané znalosti si studenti ověří a prohloubí zpracováním semestrálního projektu.

Prerekvizity

Parciální diferenciální rovnice evolučního typu, funkcionální analýza, numerické metody řešení parciálních diferenciálních rovnic.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

PODMÍNKY PRO UDĚLENÍ ZÁPOČTU: Účast ve cvičeních, zpracování semestrální práce, ve kterých studenti zúročí poznatky získané na přednáškách. Student, který dostane zápočet, získá také bodové ohodnocení v rozsahu 0 až 30 bodů, které se mu započítá do výsledné klasifikace předmětu.
ZKOUŠKA je ústní. Za zkoušku student obdrží 0 až 70 bodů.
CELKOVÉ HODNOCENÍ: Výsledné bodové hodnocení je součtem bodů získaných od cvičícího (0--30) a od zkoušejícího (0--70).
KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
HODNOCENÍ je plně v kompetenci zkoušejícího. Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).

Učební cíle

Předmět slouží jako úvodní seznámení s metodami pro výpočty proudění tekutin. Značná pozornost je věnována nevazkým stlačitelným tekutinám: odvozují se Eulerovy rovnice, studují se vlastnosti obecných hyperbolických systémů a je uvedeno několik konkrétních metod založených na metodě konečných objemů. Dále se probírají metody řešení nevazkých tekutin, konkrétně metoda tlakových korekcí a metoda spektrálních prvků. Studenti by měli pochopit, že teprve znalost podstatných fyzikálních a matematických aspektů jednotlivých typů proudění jim umožní efektivní volbu vhodné numerické metody resp. odpovídajícího softwarového produktu. Důležitou součástí předmětu je samostatná práce na zadaném projektu.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.

Základní literatura

E.F. Toro: Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, Springer, Berlin, 1999. (EN)
J.H. Ferziger, M. Peric: Computational Methods for Fluid Dynamics, Springer-Verlag, New York, 2002. (EN)

Zařazení předmětu ve studijních plánech

  • Program M2A-P magisterský navazující

    obor M-MAI , 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Substanční derivace, transportní věta, zákony zachování hmoty, hybností a energie.
2. Konstituční vztahy, stavové rovnice, Eulerovy a Navierovy-Stokesovy rovnice, počáteční a okrajové podmínky.
3. Akustické rovnice, problém dopravního proudu, problém mělké vody.
4. Hyperbolický problém, klasické a slabé řešení, nespojitosti v řešení.
5. Riemannův problém pro lineární a nelineární úlohu, klasifikace vln.
6. Metoda konečných objemů v jedné a ve dvou dimenzích.
7. Lokální chyba, stabilita, konvergence.
8. Godunovova metoda, metody založené na rozkladu vektoru toku: numerický tok Vijayasundarama, Stegera-Warminga a Van Leera.
9. Vazké nestlačitelné proudění: metoda konečných objemů na přesazených ortogonálních sítích, korekce tlaku a rychlostí technikou SIMPLE.
10. Metoda tlakových korekcí pro kolokované uspořádání proměnných, nestrukturované neortogonální sítě.
11. Stokesův problém, diskretizace metodou spektrálních prvků.
12. Stacionární Navierův-Stokesův problém, diskretizace metodou spektrálních prvků.
13. Nestacionární Navierův-Stokesův problém, metody časové diskretizace.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Ukázky řešení vybraných modelových úloh na počítači. Vypracování semestrální práce.