Detail předmětu
Numerické metody III
FSI-SN3Ak. rok: 2016/2017
Obsahem předmětu Numerické metody III jsou matematické základy metody konečných prvků a dále také výklad vybraných algoritmů pro řešení základních inženýrských úloh metodou konečných prvků. Samotnému výkladu předchází úvod do teorie Soboleových prostorů, který tvoří základ matematického aparátu. Dále je vyložen pojem slabého řešení okrajového problému eliptické parciální diferenciální rovnice a konstrukce jeho aproximace metodou konečných prvků. Jsou probírány různé typy konečných prvků, teorie interpolace a numerické integrace v metodě konečných prvků. Je analyzována konvergence různých přibližných řešení. Pomocí lineárního trojúhelníkového prvku sestaví a odladí své vlastní programy pro řešení eliptické, parabolické a hyperbolické úlohy a úlohy vlastních čísel.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
1. Klasická a variační formulace, triangulace, po částech lineární funkce.
2. Diskrétní variační formulace, elementární matice a vektory.
3. Elementární matice a vektory - pokračování.
4. Sestavení globální soustavy algebraických rovnic, její řešení, postprocessing.
5. Některé poznatky z funkcionální analýzy. Prostor W^k_2.
6. Stopy funkcí z prostoru W^k_2. Friedrichsova nerovnost a Poincareho nerovnost.
7. Bramble-Hilbertovo lemma. Sobolevova věta o vnoření.
8. Formální ekvivalence eliptického okrajového problému a příslušného
variačního problému. Existence a jednoznačnost řešení variačního problému.
9. Konečněprvkové prostory Lagrangeova typu. Definice přibližného řešení. Věta o existenci a jednoznačnosti přibližného řešení.
10. Transformace trojúhelníku na referenční trojúhelník. Vztahy mezi normami na obecném trojúhelníku a referenčním trojúhelníku.
11. Interpolační věta.
12. Numerická integrace.
13. Adaptivní techniky MKP.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
1-2. Programovací nástroje, úvod.
3-4. Příprava na programování eliptické úlohy (stacionární vedení tepla).
5-6. Vývoj programu eliptické úlohy, výklad algoritmu parabolické úlohy (nestacionární vedení tepla).
7-8. Vývoj programu parabolické úlohy, výklad algoritmu hyperbolické úlohy (kmitání membrány).
9-10. Vývoj programu pro hyperbolickou úlohu, výklad algoritmu pro výpočet vlatních čísel.
11-12. Vývoj programu pro výpočet vlastních čísel.
13. Rezerva cvičícího.