Detail předmětu
Algoritmy umělé inteligence
FSI-VAIAk. rok: 2016/2017
Kurz seznamuje se základními přístupy k algoritmům umělé inteligence a klasickými metodami používanými v této oblasti. Důraz je kladen na automatické dokazování formulí, reprezentaci znalostí a řešení úloh. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Luger, G.F. Artificial Intelligence. Structures and Strategies for Complex Problem Solving. Addison-Wesley 2008. (EN)
Negnevitsky, M. Artificial Intelligence. A Guide to Intelligent Systems. Pearson Education 2011. (EN)
Russel, S. and Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition. Pearson Education 2021. (EN)
Doporučená literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Neinformované prohledávání stavového prostoru.
3. Informované metody prohledávání.
4. Reprezentace znalostí pravidly, produkční systémy.
5. Evoluční metody prohledávání.
6. Řešení problémů rozkladem na podproblémy, metody prohledávání AND/OR grafu.
7. Metody hraní her.
8. Reprezentace znalostí formulemi predikátové logiky, rezoluční metoda.
9. Hornova logika a Prolog. Netradiční logiky.
10. Reprezentace znalostí sémantickými sítěmi, rámci, scénáři a objekty.
11. Strojové učení.
12. Inteligentní a reaktivní agenti.
13. Multiagentní systémy.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. Neinformované metody prohledávání stavového prostoru – objektový návrh implementace řešení.
3. Informované metody prohledávání stavového prostoru - gradientní algoritmus, Dijkstrův algoritmus, algoritmus uspořádaného prohledávání, teoretický rozbor.
4. A-star algoritmus – teoretický rozbor, objektový návrh implementace řešení.
5. Řešení problémů pomocí genetických algoritmů.
6. Rozklad problému na podproblémy, AND/OR graf.
7. Objektový návrh a implementace AND/OR grafu.
8. Hraní her, minimax, alfa-beta prořezávání.
9. Průběžný test.
10. Formule predikátové logiky, rezoluční metoda.
11. Řešení problémů umělé inteligence pomocí Prologu.
12. Řešení vybraného praktického problému pomocí UI.
13. Obhájení semestrálních prací.