Detail předmětu
Metody diskrétní matematiky
FP-VmdmPAk. rok: 2017/2018
Předmět Metody diskrétní matematiky seznamuje studenty se třemi základními oblastmi aplikované algebry. První oblastí je teorie uspořádaných množin a svazů, přičemž hlavní pozornost je soustředěna na teorii Booleových algeber. Další oblastí je algebraická teorie automatů a formálních jazyků. Poslední oblastí je pak úvod do teorie kódování. Ve všech třech případech se tedy jedná o algebraické disciplíny tvořící teoretické základy informatiky. Vzhledem k rozvoji využití vypočetní techniky ve všech inženýrských odvětvích jsou získané poznatky pro absolventy oboru matematické inženýrství nezbytné.
Binarni relace (tolerance a ekvivalenc), usporadane mnoziny a svazy. Booleovy algebry (booleovske funkce, algebra logiky). Konecne automaty (Mealyho a Mooreovy automaty).
Regularni jazyky a gramatiky. Zaklady teorie kodovani.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
žin a svazů, zejména Booleových algeber. Naučí se minimalizovat boole-
ovské funkce a realizovat je logickými obvody. Dále se seznámí s nej-
častejšími typy konečných automatů a s jejich vlastnostmi, s regulární-
mi jazyky a s problémem determinismu. Nakonec pak také získají předsta-
vu o základních problémech spojených s kódováním a dekódováním
zpráv.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
vyklými algebraickými metodami užívanými při konstrukci a popisu čin-
nosti počítače a při přenosu informace. Absolvováním kurzu získají
studenti další důkaz toho, že matematika je základní vědní disciplínou
a její zvladnutí je nutným předpokladem pro úspěšnou tvůrčí činnost
inženýra.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
D.R.Hankerson at al.: Coding Theory and Cryptography, Marcel Dekke... (EN)
M.Piff, Discrete Mathematics, Cambridge Univ. Press, 1991. (EN)
N.L.Biggs, Discrete Mathematics, Oxford Univ. Press, 1999. (EN)
Doporučená literatura
J. Kopka: Svazy a Booleovy algebry, Univerzita J.E.Purkyně v Ústí ... (CS)
M. Demlová, V. Koubek: Algebraická teorie automatů, SNTL, Praha, 1... (CS)
M.Novotný, S algebrou od jazyka ke gramatice a zpět, Academia, Pra... (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Zobrazení
3. Relace na množině
4. Tolerance a ekvivalence
5. Uspořádané množiny
6. Svazy
7. Booleovy svazy
8. Booleovy funkce
9. Aplikace Booleových svazů
10.Formální jazyky
11.Konečné automaty
12.Gramatiky
13.Samoopravné kódy
Cvičení
Vyučující / Lektor
Osnova
2. Zobrazení
3. Relace na množině
4. Tolerance a ekvivalence
5. Uspořádané množiny
6. Svazy
7. Booleovy svazy
8. Booleovy funkce
9. Aplikace Booleových svazů
10.Formální jazyky
11.Konečné automaty
12.Gramatiky
13.Samoopravné kódy