Detail předmětu
Digital Signal Processing
FEKT-CCZSAk. rok: 2017/2018
One-dimensional and two-dimensional discrete signals and systems. Description of systems, differential equations. Z- transform, solving of systems, transfer function, impulse response properties of the system. . Discrete Fourier transform, FFT. Basic of design FIR and IIR digital filters. Complex and real cepstrums. Application of cepstrums to speech and image processing. Signal quantization in discrete systems. Realization of digital filters and FFT in digital signal processors.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Nabízen zahraničním studentům
Výsledky učení předmětu
- Discrete signals and their description
- Discrete systems and their description
- Status of description systems
- Z -Transformation and its application in solving digital systems
- Frequency analysis of discrete signals
- Discrete system - frequency selective filter
- Discrete Fourier transformation
- Technical means of digital signal processing
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
0-10 points - test using computers and software, (optional part).
0-70 points - written exam, compulsory part of the completion of the course.
Exam is focused to verify the orientation of the basic problems of digital processing, their description, calculation methods, the characterization of systems analysis and synthesis of digital systems.
Osnovy výuky
2. Discrete signals - multi dimensional discrete signals, correlation of discrete signals.
3. Discrete systems - initial conditions, discrete systems as block diagrams.
4. Discrete systems - classification of discrete systems, linear time invariant system, combination of discrete time invariant systems, causallity and stability of time invariant systems, FIR and IIR systems.
5. State diagram of linear time invariant system.
6. Z- transform and using.
7. Frequency analysis of discrete signals - time discrete Fourier line, spectral power, FT of discrete aperiodic signal, feature of FT, cepstrum.
8. Frequency characteristics of linear time invariant system, frequency filters, lowpass filter, highpass filter, digital resonator, bandpass filter, notch filter, comb filter, phase filter.
9. Discrete FT definition, features, vector form of DFT, relationship between DFT and Z - transform.
10. Inverse systems and deconvolution - reciprocal disrete systém, geometric interpretation of the frequency response, linear time-invariant discrete system with minimum, maximum and mixed-phase homomorphic deconvolution.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
OPPENHEIM, A.L., SCHAFER, R.W., Digital Signal Processing, Prentice-Hall, Inc. New Jersey, 1995.
VÍCH.R., Z Transform Theory and Applications. D.REidel Publishing Company, Dordrecht 1987.
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Transformace z, konvergenční oblast a vlastnosti. Inverzní transformace z a její výpočet pomocí reziduové věty. Řešení diferenčních rovnic pomocí transformace z.
Přenosová funkce rozložení pólů a nulových bodů, kmitočtová charakteristika a její geometrická interpretace. Dvojrozměrná transformace z.
Diskrétní Fourierova transformace a její vlastnosti. Kruhová (periodická) konvoluce a její výpočet pomocí DFT. Výpočet diskrétní konvoluce, metoda přičtení přesahu a vynechání přesahu. Dvojrozměrná DFT.
Rychlá Fourierova transformace. Výpočet dvou reálných posloupností, výpočet reálné posloupnosti dvojnásobné délky. Rychlá konvoluce a korelace.Výpočet inverzní DFT pomocí přímé DFT.
Reprezentace diskrétních systémů pomocí matic a grafů signálových toků. Masonovo pravidlo. Stavové kanonické struktury, sériová a paralelní forma. Řešení stavových diferenčních rovnic.
Návrh číslicových filtrů typu FIR, lineární fáze. Metoda váhové posloupnosti, metoda vzorkování kmitočtové charakteristiky. Optimální rovnoměrné zvlněné filtry, Remezův algoritmus.
Návrh číslicových filtrů typu IIR. Využití analogových prototypů. Kmitočtové transformace. Metoda signálové invariance a bilineární transformace.
Systémy s více vzorkovacími kmitočty. Podvzorkování (decimace) a interpolace. Změna vzorkovacího kmitočtu ve tvaru racionálního lomeného čísla. Banky filtrů.
Homomorfní zpracování signálů. Komplexní a reálné kepstrum. Aplikace kepster při zpracování řeči a obrazu.
Kvantování signálů v diskrétních systémech. Reprezentace čísel v pevné a pohyblivé řádové čárce, kvantování a zaokrouhlení. Kvantování koeficientů přenosové funkce. Kvantování mezivýsledků, mezní cykly, vážení pro omezení přetečení aritmetiky. Kvantování spojitého signálu.
Hardware a architektura mikroprocesorových obvodů pro zpracování signálu. Přehled požadavků na zpracování signálu z různých oblastí. Harvardská architektura. Definice signálového procesoru, dělení signálových procesorů do generací, vlastnosti jednotlivých generací. Společné vlastnosti různých typů signálových procesorů.
Realizace číslicových filtrů a procesoru FFT v signálových procesorech. Vývojové prostředky, emulace na čipu (DSPlus, DSP56002EVM).
Cvičení na počítači
Vyučující / Lektor
Osnova
Spektrální reprezentace diskrétních periodických a neperiodických signálů.
Diskrétní Fourierova řada a transformace a jejich souvislost s Fourierovou řadou a transformací. Rýchlá Fourierova transformace (FFT).
Diskrétní lineární a periodická konvoluce a korelace. Výpočet pomocí FFT.
Test 1.
Modely diskrétních systémů, vnější a stavový popis. Přenosová funkce, impulsní charakteristika, rozložení pólů a nulových bodů.
Návrh číslicových filtrů typu FIR, metoda váhové posloupnosti, Remezův algoritmus.
Návrh číslicových filtrů typu IIR. Bilineární transfromace a impulsní invariance.
Test 2.
Systémy s více vzorkovacími kmitočty, decimace a interpolace.
Komplexní a reálné kepstrum. Rozbalení fáze.
Kvantování signálu v diskrétních systémech. Implementace algoritmů v mikroprocesorech.
Test 3.