Detail předmětu
Evoluční algoritmy
FEKT-FEALAk. rok: 2017/2018
Předmět je orientován na deterministické a stochastické metody optimalizace pro hledání globálních extrémů. Zaměřuje se zejména na evoluční algoritmy s populacemi, jako genetické algoritmy, řízené náhodné prohledávání, evoluční strategie, metodu rojení částic, metodu mjravenčích kolonií a další.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Realizovat jednoduché analytické optimalizační metody (metodu nejstrmějšího sestupu a Newtonovu metodu)
Realizovat simplexovou metodu pro hledání globálního extrému
Vysvětlit podstatu stochastických optimalizačních metod s populacemi
Vysvětlit podstatu binárních a spojitých genetických algoritmů a jejich základních operací
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
- až 30 bodů za řešení zadaných úkolů v laboratorním cvičení (pro postup ke zkoušce je nutný zisk minimálně 15 bodů)
- až 70 bodů za písemnou zkoušku (z písemné zkoušky je nutné získat minimálně 35 bodů)
- 30 points can be obtained for activity in the laboratory exercises, consisting in solving tasks (for the procedure for the examination must be obtained at least 15 points)
- 70 points can be obtained for the written exam (the written examination is necessary to obtain at least 35 points)
Osnovy výuky
2. Metoda nejstrmějšího sestupu, Newtonova metoda
3. Jednoduché metody: horolezecký algoritmus, zakázané prohledávání, simulované žíhání
4. Stochastické algoritmy pro hledání globálního minima, simplexová metoda
5. Evoluční algoritmy s populacemi. Binární genetické algoritmy.
6. Spojité genetické algoritmy.
7. Řízené náhodné prohledávání, evoluční strategie, diferenciální evoluce.
8. Rojové algoritmy: SOMA, rojení částic, mravenčí kolonie,
9. Algoritmy inspirované světluškami a včelami,
10. Algoritmy inspirované netopýry a vlčí smečkou.
11. Soutěžící heuristiky,testovací funkce pro ověřování optimalizačních algoritmů
12. Experimentální porovnávání evolučních algoritmů
12. Úvod do genetického programování
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
V zásadě:
- povinné počítačové cvičení (zmeškaná laboratorní cvičení musí být řádně omluvená a lze je nahradit po domluvě s vyučujícím)
- nepovinná přednáška
Základní literatura
Doporučená literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Metoda nejstrmějšího sestupu, Newtonova metoda
3. Stochastické algoritmy pro hledání globálního minima, simplexová metoda
4. Evoluční algoritmy s populacemi. Binární genetické algoritmy.
5. Spojité genetické algoritmy.
6. Řízené náhodné prohledávání, evoluční strategie, rojení částic
7. Diferenciální evoluce, SOMA, mravenčí kolonie
8. Soutěžící heuristiky
9. Testovací funkce pro ověřování optimalizačních algoritmů
10. Jednoduché metody: horolezecký algoritmus, zakázané prohledávání, simulované žíhání
11. Experimentální porovnávání evolučních algoritmů
12. Úvod do genetického programování
Cvičení na počítači
Vyučující / Lektor
Osnova
2. Newtonova metoda
3. Simplexová metoda (Nelderův-Meadův algoritmus)
4. Úvod do heuristických a metaheuristických algoritmů. Binární genetický algoritmus (GA)
5. GA pro nalezení minima v 2D
6. Spojité GA. Rozdíly mezi binárními a spojitými GA
7. Aplikace GA pro registraci obrazů
8. Problém obchodního cestujícího, základní heuristické algoritmy
9. Permutační GA pro řešení problému obchodního cestujícího (TSP)
10. Metoda rojení částic (PSO), metoda mravenčích kolonií pro řešení TSP
11. Řešení projektu - „problém batohu“
12. PSO pro nalezení minima 2D funkce