Detail předmětu
Digital Signal Processing
FEKT-NCSIAk. rok: 2017/2018
Definition and classification of 1D and 2D discrete signals and systems. Signal and system examples. Spectral analysis using FFT. Spectrograms and moving spectra. The Hilbert transform. Representation of bandpass signals. Decimation and interpolation. Transversal and polyphase filters. Filter banks with perfect reconstruction. Quadrature mirror filters (QMF). The wavelet transform. Signal analysis with multiple resolution. Stochastic variables and processes, mathematical statistics. Power spectral density (PSD) and its estimation. Non-parametric methods for PSD calculation. Linear prediction analysis. Parametric methods for PSD calculation. Complex and real cepstra. In computer exercises students verify digital signal processing method in the Matlab environment in real time.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. External and internal (state-space) representations. Bounded Input Bounded Output (BIBO) stability, causality. Linear time-invariant 1D discrete system. Connection of partial sections. FIR and IIR systems. Frequency responses, fast convolution. Overlap-save and overlap-add methods. Linear shift-invariant 2D discrete system. The Fourier transform of 2D discrete signals, 2D frequency response.
3. Matrix representation of system equations and their solution. Semi-symbolic computer analysis. Signal flow graphs and Mason’s gain rule. Check of discrete system causality.
4. Definition of a periodic even sequence using an aperiodic sequence, definition of discrete cosine transform from DCT I to DCTIV. Relationship between DCT II and DFT. Definition of the discrete sine transform. Undersampling (decimation) and oversampling (interpolation) of discrete signal in an integer ratio. Description of the time and frequency domains. The transformation of sampling frequency in a rational number ratio. Optimization of the number of multiplier and memory registers of anti-aliasing low pass filter.
5. Zero-pole plot in the z domain, Minimal, maximal and mixed phases. All-pass filter, inverse discrete system. Sampling of bandpas signals. Real signal, analytical signal and complex lowpass signal. The Hilbert transform for continuous-time signals. Quadrature modulator and demodulator. The Hilbert transformer for discrete signals.
6. Analyzing part and synthesizing part of digital filter bank. Calculation of DFT spectrum of discrete signal using uniform-DFT filter banks. Sub-band coding. Quadrature mirror filters (QMF). Perfect signal reconstruction. Transmultiplexers.
7. The Gabor and the short-time Fourier transforms. Time-frequency resolution, The Heisenberg uncertainty principle. Orthogonal systems and their application to spectral analysis. Wavelets and their definition.
8. The continuous-time wavelet transform (CWT), the discrete wavelet transform (DWT). The discrete-time wavelet transform (DTWT). Relationship between DTWT and QMF digital filter banks.
9. Cumulative distribution function and probability density function, general and central moments. Stationary and ergodic continuous- and discrete-time stochastic processes. Estimates, consistent estimate. Random selection from probability distribution, statistics, statistical hypothesis testing, parametric and non-parametric tests, goodness of fit tests.
10. Forward and backward linear prediction. Calculation of linear prediction coefficients. Lattice structure of autoregressive (AR) and autoregressive moving average (ARMA) types and their application. Using linear predictive analysis for speech signal compression.
11. Definition of power spectral density and its properties. Definition of periodogram and its calculation. The Bartlett method of averaging periodograms. The Welch method of averaging modified periodograms. The Blackman and Tukey method of smoothing the periodogram. Performance characteristics of nonparametric power spectral density estimators.
12. AR, MA or ARMA type stochastic processes. Model definition for power spectral density calculation. Relationship between autocorrelation coefficients and model parameters. The Yule-Walker and the Burg methods for AR type model. Selection of the order of type AR model.
13. Complex and real cepstra. Generalized superposition. Homomorphic filtering, definition and its application. Approximation of exponential function by continued fraction expansion.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
MADISETTI, V.K., WILLIAMS, D.B.: The Digital Signal Processing Handbook. CRC Press, 1998. ISBN 0-8493-8572-5
MITRA, S.K.: Digital Signal Processing. A Computer-Based Approach. The McGraw-Hill Companies, Inc. New York 1998. ISBN 0-07-042953-7
SHENOI, K.: Digital Signal Processing in Telecommunications. Prentice Hall, New Jersey 1995. ISBN 0-13-096751-3
VÍCH, R., SMÉKAL, Z.: Digital Filters (Číslicové filtry). Academia, Praha 2000. ISBN 80-200-0761-X (In Czech)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Charakteristika a klasifikace diskrétních systémů. Kompresory a expandery, omezovače a ekvalizery, kmitočtové a časové filtry, redukce šumu, hudební efekty, tónová volba, potlačení ozvěny, apod.
Spektrální analýze s využitím FFT. Vztah mezi DFT a bankou filtrů. Použití oken při spektrální analýze. Výpočet spektra v bodě a na křivce v rovině z. Chirp z algoritmus. Spektrogramy a tekoucí spektra. Goertzelův algoritmus.
Diskrétní Hilbertova transformace. Analytický signál. Podmínka minimální fáze. Výpočet okamžitého kmitočtu. Reprezentace pásmově omezených signálů.
Výkonová spektrální hustota a její odhad. Konzistentní odhad. Výpočet pomocí korelace. Periodogram. Neparametrické metody: Bartletova a Welchova metoda.
Lineární predikční analýza. Reprezentace stacionárního náhodného procesu pomocí racionální lomené funkce. Autoregresivní procesy, klouzavý průměr. Přímá a zpětná lineární predikce. Příklady použití v mobilních sítích.
Parametrické metody pro výpočet výkonové spektrální hustoty. Model typu AR(Yule-Walkerova metoda). Spektrální odhad s maximální entropií (Burgova metoda). Modely typu ARMA a odhad jejich parametrů.
Adaptivní filtrace. Gradientní algoritmy typu LMS a RLS a jejich modifikace. Blokové adaptivní filtry. Příklady použití (adaptivní potlačení ozvěny v ADSL přenosu, ekvalizace v mobilní síti apod.).
Zpracování signálu pomocí změny vzorkovacího kmitočtu. Decimace a interpolace. Návrh číslicových filtrů pro vícenásobnou změnu vzorkovacího kmitočtu.
Transverzální a polyfázové filtry. Dvoukanálové a vícekanálové kvadraturní zrcadlové filtry (QMF).
Banky filtrů s dokonalou rekonstrukcí. Půlpásmové filtry. Paraunitární banky filtrů. SBC banky filtrů. Oktávové banky filtrů a wavelety.
Waveletová (vlnková transformace). Analýza signálu s vícenásobným rozlišením. Diskrétní waveletová transformace. Ortogonální a biortogonální banky filtrů.
Komprese audio signálu v telekomunikacích. PCM bitový datový tok a možnosti jeho redukce. Maskování a percepční kódování. Banky filtrů kompresních metod. Standardy typu MPEG audio.
Cvičení na počítači
Vyučující / Lektor
Osnova
Základní typy diskrétních systémů a způsob jejich využití.
Spektrální analýza s FFT a výpočet spektra v bodě a na křivce.
Analytický signál a určení okamžitého kmitočtu. Systémy s minimální fází.
Bartletova a Welchova metoda výpočtu výkonové spektrální hustoty pomocí Matlabu.
Test 1.
Lineární predikce, modelování autoregresevních procesů.
Parametrické metody určení korelace a výkonové spetrální hustoty.
Adaptivní algoritmy a jejich modelování pomocí Matlabu.
Test 2.
Decimace a interpolace. Banky filtrů.
Kompresní metody audiosignálu a videosignálu modelované Matlabem.
Test 3.