Detail předmětu
Funkcionální analýza I
FSI-SU1Ak. rok: 2017/2018
V předmětu se diskutují základní pojmy a principy funkcionální analýzy týkající se především metrických prostorů, lineárních normovaných prostorů (speciálně Banachových) a unitárních prostorů (speciálně Hilbertových). Zmíněny jsou i elementy Lebesgueova integrálu. Dále je ukázáno využití těchto pojmů při řešení některých úloh matematické analýzy a numerické matematiky.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Zkouška: Zkouška má ústní formu. Diskutována je teorie i příklady. Vyžaduje se orientace v probraných základních pojmech a principech disciplíny a ilustrace teorie v konkrétních situacích.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
A. Torchinsky, Problems in real and functional analysis, American Mathematical Society 2015. (EN)
C. Costara, D. Popa, Exercises in functional analysis, Kluwer 2003. (EN)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
E. Zeidler, Applied functional analysis: Main principles and their applications, Springer, 1995. (EN)
F. Burk, Lebesgue measure and integration: An introduction, Wiley 1998. (EN)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
J. Lukeš, Zápisky z funkcionální analýzy, Karolinum 1998. (CS)
Z. Došlá, O. Došlý, Metrické prostory: teorie a příklady, PřF MU Brno 2006. (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Základní pojmy a fakta. Příklady. Uzavřené a otevřené množiny. Konvergence. Separabilní metrické prostory. Úplné metrické prostory. Kompaktní prostory. Zobrazení metrických prostorů. Banachova věta o pevném bodu. Aplikace.
Elementy teorie míry a integrálu
Lebesgueova míra. Měřitelné funkce. Lebesgueův integrál. Věty o limitních přechodech.
Normované lineární prostory
Základní pojmy a fakta. Konečná vs. nekonečná dimenze. Banachovy prostory. Příklady. (Relativní) kompaktnost. Arzeláova-Ascoliho věta. Schauderova věta. Aplikace.
Unitární prostory
Základní pojmy a fakta. Hilbertovy prostory. Příklady. Konečná vs. nekonečná dimenze. Ortogonalita. Obecné Fourierovy řady. Rieszova-Fischerova věta.
Speciální typy prostorů (v rámci probírané teorie), zejména prostory posloupností, prostory spojitých funkcí, prostory integrovatelných funkcí. Některé nerovnosti.
Lineární funkcionály a operátory, duální prostory a operátory
Prostor lineárních operátorů. Spojitost. Omezenost. Invertibilita. Vliv dimenze prostoru. Duální prostory k prostorům funkcí a posloupností.
Reflexivita. Slabá konvergence. Duální a adjungované operátory. Hahnova-Banachova věta a její důsledky. Banachova-Steinhausova věta a její důsledky.
Cvičení
Vyučující / Lektor
Osnova