Detail předmětu

Soft Computing

FIT-SFCAk. rok: 2017/2018

Soft computing je zastřešující název (který nemá použitelný český překlad) pro netradiční technologie, resp. přístupy k řešení obtížných problémů. Obsah předmětu je ve shodě s významem jeho názvu následující: Tolerance pro nepřesnost a neurčitost jako základní atributy teorií soft-computing. Neuronové sítě. Fuzzy logika. Genetické, ACO (Ant Colony Optimization) a PSO (Particle Swarm Optimization) algoritmy. Pravděpodobnostní usuzování. Hrubé množiny. Chaos.  Hybridní přístupy (kombinace neuronových sítí, fuzzy logiky a genetických algoritmů) .

Jazyk výuky

čeština

Počet kreditů

5

Výsledky učení předmětu

  • Studenti se seznámí se základními typy neuronových sítí a jejich aplikacemi.
  • Studenti se seznámí se základy teorie fuzzy množin a fuzzy logiky včetně návrhu fuzzy regulátoru.
  • Studenti se naučí řešit optimalizační problémy pomocí genetických, ACO (Ant Colony Optimization) a PSO (Particle Swarm Optimization) algoritmů.
  • Studenti se seznámí s problematikou pravděpodobnostního usuzování.
  • Studenti se seznámí se základy teorie hrubých množin a s použitím těchto množin při dolování znalostí z databází.  
  • Studenti se seznámí se základy teorie chaosu.

  • Studenti se naučí odborné terminologii z oblasti soft-computing, a to jak v českém, tak i anglickém jazyce.
  • Studenti si uvědomí důležitost tolerance nepřesnosti a neurčitosti pro konstrukci robustních a levných inteligentních zařízení.

Prerekvizity

  • Programování v jazycích C++ nebo Java.
  • Základní znalosti z diferenciálního počtu a teorie pravděpodobnosti.

Způsob a kritéria hodnocení

Nejméně 20 bodů získaných v průběhu semestru (za půlsemestrální test a projekt).

Osnovy výuky

    Osnova přednášek:
    1. Úvod. Biologický a umělý neuron, umělé neuronové sítě. Základní modely neuronů, Adaline a Perceptron.
    2. Neuronové sítě Madaline a BP (Back Propagation). Neuronové sítě s proměnnou topologií. 
    3. Neuronové sítě RBF a RCE. Topologicky organizované neuronové sítě, soutěživé učení, Kohonenovy neuronové sítě/mapy.
    4. Neuronové sítě CPN, LVQ a ART.
    5. Neuronové sítě jako asociativní paměti (Hopfield, BAM, SDM).
    6. Řešení optimalizačních problémů neuronovými sítěmi. Stochastické neuronové sítě, Boltzmannův stroj.
    7. Genetické algoritmy. 
    8. Optimalizační algoritmy ACO a PSO.
    9. Fuzzy množiny, fuzzy logika, fuzzy inference.  
    10. Pravděpodobnostní usuzování, Bayesovské sítě.
    11. Hrubé množiny.
    12. Chaos.
    13. Hybridní přístupy (neuronové sítě, fuzzy logika, genetické algoritmy).

    Osnova ostatní - projekty, práce:
    Individuální projekt - řešení konkrétního problému (klasifikace, optimalizace, asociace, řízení).

Učební cíle

Seznámit studenty se základy teorií soft-computing, tj. se základy teorií netradičních technologií a přístupů k řešení obtížných problémů reálného světa.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

  • Půlsemestrální písemný test - 15 bodů.
  • Projekt - 30 bodů.
  • Závěrečná písemná zkouška - 55 bodů, minimálně však 25 bodů. Pro získání bodů ze závěrečné písemné zkoušky je nutné zkoušku vypracovat tak, aby byla hodnocena nejméně 25 body (v opačném případě bude zkouška hodnocena 0 body).

Základní literatura

Kriesel, D.: A Brief Introduction to Neural Networks, 2005, Fundamentals of the New Artificial Intelligence, Springer-Verlag New York, Inc., 2008. ISBN 978-1-84628-838-8 
Russel,S., Norvig,P.: Artificial Intelligence, Prentice-Hall, Inc., third edition 2010, ISBN 0-13-604259-7
Rutkowski, L.: Flexible Neuro-Fuzzy Systems, Kluwer Academic Publishers, 2004, ISBN 1-4020-8042-5

Doporučená literatura

Mehrotra, K., Mohan, C. K., Ranka, S.: Elements of Artificial Neural Networks, The MIT Press, 1997, ISBN 0-262-13328-8 Munakata, T.: Fundamentals of the New Artificial Intelligence, Springer-Verlag New York, Inc., 2008. ISBN 978-1-84628-838-8 Russel, S., Norvig, P.: Artificial Intelligence, Prentice-Hall, Inc., 1995, ISBN 0-13-360124-2, second edition 2003, ISBN 0-13-080302-2, third edition 2010, ISBN 0-13-604259-7

Zařazení předmětu ve studijních plánech

  • Program IT-MGR-2 magisterský navazující

    obor MMI , 0 ročník, zimní semestr, volitelný
    obor MBI , 2 ročník, zimní semestr, povinný
    obor MSK , 0 ročník, zimní semestr, volitelný
    obor MMM , 0 ročník, zimní semestr, povinně volitelný
    obor MBS , 0 ročník, zimní semestr, volitelný
    obor MIS , 0 ročník, zimní semestr, volitelný
    obor MIN , 1 ročník, zimní semestr, povinný
    obor MGM , 0 ročník, zimní semestr, volitelný
    obor MPV , 0 ročník, zimní semestr, povinně volitelný