Detail předmětu
Umělá inteligence
FEKT-MPC-UINAk. rok: 2019/2020
Předmět je zaměřen na prohloubení znalostí a aplikaci metod z oblasti umělé inteligence. Umělá inteligence – definice, směry vývoje. Umělé neuronové sítě, paradigmata neuronových sítí, metoda učení backpropagation, Kohonenovy samoorganizační mapy, Hopfieldova síť, RCE neuronová síť. Znalostní systémy, reprezentace znalostí, řešení úloh, struktura a činnost expertních systémů. Zpracování optické informace prostředky umělé inteligence. Inteligentní robot.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- vysvětlit pojem umělá inteligence z pohledu její aplikace v technických zařízení,
- vysvětlit paradigma pro umělé neuronové sítě: perceptron, vícevrstvá neuronová síť s učením backpropagation, Kohonenovy samoorganizační mapy, Hopfieldova síť, RCE neuronová síť,
- diskutovat a ověřit nastavení jednotlivých parametrů zvolené neuronové sítě,
- posoudit oblast použití jednotlivých umělých neuronových sítí,
- vysvětlit architekturu a funkčnost znalostních systémů,
- vytvořit bázi znalosti pro expertní systém NPS32,
- zvolit oblasti použití expertních systémů,
- aplikovat zpracování optické informace prostředky umělé inteligence.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. Neurověda, kybernetika
3. Umělé neuronové sítě - paradigmata, Perceptron
4. Umělé neuronové sítě – Back propagation
5.Umělé neuronové sítě - Hopfield, Kohonen, RCE
6. státní svátek 2019
7. Počítačové vidění
8. Počítačové vidění
9. Expertní systémy
10. Expertní systémy
11. Konvoluční neuronové sítě
12. Konvoluční neuronové sítě
13. Inteligentní systémy
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
RUSESELL, Stuart a NORVIG, Peter. Artificial Intelligence. A Modern Aproach. New Jersey: Prentice Hall 2010. 1132 s. ISBN-13: 978-0-13-604259-4. (EN)
Doporučená literatura
SONKA, Milan, HLAVAC, Vaclav a BOYLE, Rogert. Image Processing, Analysis and Machine Vision. Toronto: Thomson, 2008. 829 s. ISBN 978-0-495-24438-7. (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Cvičení na počítači
Vyučující / Lektor
Osnova
2. Základy Matlabu a Počítačového vidění
3. Perceptron
4. Jednovrstvá neuronová síť
5. Back propagation
6. Projekt (práce doma)
7. Umělé neuronové sítě
8. Počítačové vidění - Konvoluce
9. Expertní systémy
10. Projekt 1 – Referát
11. Projekt 1 – Referát
12. Expertní systémy
13. Expertní systémy
Přednáška
Vyučující / Lektor
Osnova
2. Neurověda, kybernetika
3. Umělé neuronové sítě - paradigmata, Perceptron
4. Umělé neuronové sítě – Back propagation
5.Umělé neuronové sítě - Hopfield, Kohonen, RCE
6. státní svátek 2019
7. Počítačové vidění
8. Počítačové vidění
9. Expertní systémy
10. Expertní systémy
11. Konvoluční neuronové sítě
12. Konvoluční neuronové sítě
13. Inteligentní systémy