Detail předmětu

Maticový a tenzorový počet

FEKT-MPC-MATAk. rok: 2019/2020

Matice jako algebraická struktura. Operace s maticemi. Determinant. Matice v soustavách lineárních algebraických rovnic. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů. Lineární zobrazení vektorových prostorů a jeho maticové
vyjádření. Skalární součin, ortogonální průmět a prvek nejlepší aproximace. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic. Bilineární a kvadratické formy, definitnost kvadratických forem. Lineární formy a tenzory. Různé typy souřadnic.
Kovariantní, kontravariantní a smíšené tenzory. Operace s tenzory. Tenzorový antisymetrický vnější součin. Antilineární formy. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory. Samoadjungovaný lineární operátor.
Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox. Kvantové výpočty. Matice hustoty. Kvantová teleportace.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Zvládnutí základních postupů při řešení úloh a úkolů z maticového a tenzorového počtu a jejich aplikací.

Prerekvizity

Je požadováno zvládnutí učiva předmětu Matematika 1. Absolvování předmětu Matematický seminář je doporučeno.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány ve Studijním a zkušebním řádu VUT.

Způsob a kritéria hodnocení

Semestrální zkouška je hodnocena maximálně 70 body. Ze cvičení je možné získat maximálně 30 bodů, z nichž 20 bodů připadá na písemné testy a 10 bodů na řešení dvou projektů, každý po 5 bodech. Zkouška z předmětu bude probíhat distančně.

Osnovy výuky

1. Matice jako algebraická struktura. Operace s maticemi. Determinant.
2. Matice v soustavách lineárních algebraických rovnic.
3. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů.
4. Lineární zobrazení vektorových prostorů a jeho maticové vyjádření.
5. Skalární součin, ortogonální průmět a prvek nejlepší aproximace.
6. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic.
7. Bilineární a kvadratické formy, definitnost kvadratických forem.
8. Lineární formy a tenzory. Různé typy souřadnic. Kovariantní, kontravariantní a smíšené tenzory.
9. Operace s tenzory. Tenzorový a antisymetrický vnější součin. Antilineární formy.
10. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory.
11. Samoadjungovaný lineární operátor. Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace.
12. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox.
13. Kvantové výpočty. Matice hustoty. Kvantová teleportace.

Učební cíle

Zvládnout základy maticového a tenzorového počtu a jejich aplikace.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

Kolman, B., Elementary Linear Algebra, Macmillan Publ. Comp., New York, ISBN 978-0029463703, 1986. (EN)
Kolman, B., Hill, D. R., Introductory Linear Algebra, Pearson, New York, 978-8131723227, 2008. (EN)
Kovár, M., Maticový a tenzorový počet, Skriptum, Brno, 2013, 220s. (CS)
Kovár, M., Selected Topics on Multilinear Algebra with Applications, Skriptum, Brno, 2015, 141s. (EN)

Doporučená literatura

Crandal, R. E., Mathematica for the Sciences, Addison-Wesley, Redwood City, ISBN 978-0201510010, 1991. (EN)
Davis, H. T., Thomson K. T., Linear Algebra and Linear Operators in Engineering, Academic Press, San Diego, ISBN 978-0122063497, 2007. (EN)
Demlová, M., Nagy, J., Algebra, STNL, Praha 1982. (CS)
Havel, V., Holenda J.: Lineární algebra, SNTL, Praha 1984. (CS)

Zařazení předmětu ve studijních plánech

  • Program MPC-AUD magisterský navazující

    specializace AUDM-TECH , 1 ročník, letní semestr, povinně volitelný
    specializace AUDM-ZVUK , 1 ročník, letní semestr, povinně volitelný

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1 ročník, letní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení s počítačovou podporou

18 hod., povinná

Vyučující / Lektor