Detail předmětu
Maticový a tenzorový počet
FEKT-MPC-MATAk. rok: 2019/2020
Matice jako algebraická struktura. Operace s maticemi. Determinant. Matice v soustavách lineárních algebraických rovnic. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů. Lineární zobrazení vektorových prostorů a jeho maticové
vyjádření. Skalární součin, ortogonální průmět a prvek nejlepší aproximace. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic. Bilineární a kvadratické formy, definitnost kvadratických forem. Lineární formy a tenzory. Různé typy souřadnic.
Kovariantní, kontravariantní a smíšené tenzory. Operace s tenzory. Tenzorový antisymetrický vnější součin. Antilineární formy. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory. Samoadjungovaný lineární operátor.
Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox. Kvantové výpočty. Matice hustoty. Kvantová teleportace.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. Matice v soustavách lineárních algebraických rovnic.
3. Vektorový prostor, báze a dimenze. Transformace souřadnic. Součet a průnik vektorových prostorů.
4. Lineární zobrazení vektorových prostorů a jeho maticové vyjádření.
5. Skalární součin, ortogonální průmět a prvek nejlepší aproximace.
6. Problém vlastních hodnot. Spektrální vlastnosti (zejména samoadjungovaných) matic.
7. Bilineární a kvadratické formy, definitnost kvadratických forem.
8. Lineární formy a tenzory. Různé typy souřadnic. Kovariantní, kontravariantní a smíšené tenzory.
9. Operace s tenzory. Tenzorový a antisymetrický vnější součin. Antilineární formy.
10. Maticová formulace kvantové mechaniky. Diracova notace. Bra a Ket vektory. Vlnové pakety jako vektory.
11. Samoadjungovaný lineární operátor. Schrodingerova rovnice. Princip neurčitosti a Heisenbergova relace.
12. Multi-qubitové systémy a kvantová provázanost (entaglement). Einstein-Podolsky-Rosen experiment-paradox.
13. Kvantové výpočty. Matice hustoty. Kvantová teleportace.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Kolman, B., Hill, D. R., Introductory Linear Algebra, Pearson, New York, 978-8131723227, 2008. (EN)
Kovár, M., Maticový a tenzorový počet, Skriptum, Brno, 2013, 220s. (CS)
Kovár, M., Selected Topics on Multilinear Algebra with Applications, Skriptum, Brno, 2015, 141s. (EN)
Doporučená literatura
Davis, H. T., Thomson K. T., Linear Algebra and Linear Operators in Engineering, Academic Press, San Diego, ISBN 978-0122063497, 2007. (EN)
Demlová, M., Nagy, J., Algebra, STNL, Praha 1982. (CS)
Havel, V., Holenda J.: Lineární algebra, SNTL, Praha 1984. (CS)
Zařazení předmětu ve studijních plánech