Detail předmětu
Konstruktivní a počítačová geometrie
FSI-1KGAk. rok: 2018/2019
Kurz konstruktivní a počítačové geometrie shrnuje a upřesňuje základní geometrické pojmy, včetně základních geometrických zobrazení, a seznamuje studenty s některými druhy promítání, jejich vlastnostmi a aplikacemi. Důraz je kladen na Mongeovo promítání a pravoúhlou axonometrii. Jsou uvedeny také základy rovinné kinematické geometrie. Velká část kurzu je věnována zobrazování křivek a ploch inženýrské praxe a některým potřebným konstrukcím, jako jsou např. rovinné řezy a průniky.
Tato zobrazování a příslušné konstrukce jsou doplněna modelováním v softwaru Rhinoceros.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
ZKOUŠKA: Zkouška má písemnou a ústní část. Písemná část trvá 90 minut a obsahuje 3 příklady. Za písemnou část je možné získat maximálně 60 bodů, za ústní část maximálně 20 bodů.
PRAVIDLA KLASIFIKACE:
1. Výsledky ze cvičení (maximálně 20 bodů)
2. Výsledky z písemné zkoušky (maximálně 60 bodů)
3. Výsledky z ústní části zkoušky (maximálně 20 bodů)
Klasifikační hodnocení studenta dle ECTS:
0-49 bodů: F
50-59 bodů: E
60-69 bodů: D
70-79 bodů: C
80-89 bodů: B
90-100 bodů: A
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Martišek, D. Počítačová geometrie a grafika, Brno: VUTIUM, 2000. ISBN 80-214-1632-7
Medek, V., Zámožík, J. Konštruktívna geometria pre technikov, Bratislava: Alfa, 1978.
Paré, E. G. Descriptive geometry. 9th ed. Upper Saddle River, NJ, 1997. ISBN 00-239-1341-X.
Slaby, S. M. Fundamentals of three-dimensional descriptive geometry. 2d ed. New York: Wiley, c1976. ISBN 04-717-9621-2.
Urban, A. Deskriptivní geometrie, díl 1. - 2., 1978.
Doporučená literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. týden: Promítání: Zobrazovací rovnice středového a rovnoběžného promítání. Úvod do Mongeova promítání.
3. týden: Mongeovo promítání: přímka a bod v rovině, hlavní a spádové přímky, základní polohové úlohy.
4. týden: Mongeovo promítání: metrické úlohy, otáčení roviny, kružnice v rovině, 3. průmětna – bokorysna.
5. týden: Axonometrie, Pohlkeova věta. Pravoúhlá axonometrie.
6. týden: Pravoúhlá axonometrie: přímka a bod v rovině, hlavní přímky. Základní polohové úlohy, metrické úlohy v pomocných průmětnách (i kružnice).
7. týden: Pravoúhlá axonometrie: Zářezová metoda (pouze Eckhartova). Zobrazení elementárních ploch a těles.
8. týden: Elementární plochy a tělesa: zobrazení v Mongeově promítání i v pravoúhlé axonometrii (náčrtky v základní poloze), řezy, průsečíky (průniky) s přímkou.
9. týden: Křivky: Bézierova, Coonsova, Fergusonova (stručná informace). Rektifikace. Rovinná kinematická geometrie.
10. týden: Šroubovice: šroubový pohyb, šroubování bodu, tečna, zobrazení šroubovice v Mongeově promítání i pravoúhlé axonometrii.
11. týden: Rotační plochy: kvadriky (i typy řezů) a anuloid. Řezy rotační kuželové plochy. Rotační jednodílný hyperboloid jako přímková plocha.
12. týden: Šroubové plochy: vytvoření, klasifikace (přímkové a cyklické).
13. týden: Rozvinutelné plochy: rotační válec a kužel s řezy, kosý válec a kužel.
Cvičení
Vyučující / Lektor
Osnova
2. týden: Středová kolineace a osová afinita. Kuželosečky: afinita mezi kružnicí a elipsou. Tečny z bodu k elipse (s využitím ohniskových vlastností i osovou
afinitou).
3. týden: Kuželosečky: proužková konstrukce elipsy, Rytzova konstrukce elipsy. Mongeovo promítání: zobrazení bodů, přímek, rovin.
4. týden: Mongeovo promítání: základní polohové úlohy, základní metrické úlohy.
5. týden: Mongeovo promítání: zobrazení kružnice, zobrazení těles s podstavou v obecné rovině.
6. týden: Pravoúhlá axonometrie: zobrazení bodů, přímek, rovin. Zobrazení čtverce a kružnice v základních rovinách.
7. týden: Pravoúhlá axonometrie: základní polohové úlohy, metrické úlohy v pomocných průmětnách, zobrazení elementárních těles.
8. týden: Pravoúhlá axonometrie: zářezová metoda. Mongeovo promítání a pravoúhlá axonometrie: průsečíky přímky s elementárními tělesy.
9. týden: Zápočtová písemná práce. Mongeovo promítání a pravoúhlá axonometrie: řezy elementárních těles rovinou.
10. týden: Kinematika: konstrukce bodů a tečen cykloidy, evolventy, epicykloidy, ...
11. týden: Šroubovice: šroubování bodu, tečna ke šroubovici. Zobrazení šroubovice v Mongeově promítání i pravoúhlé axonometrii.
12. týden: Rotační plochy: rovinné řezy kvadrik. Šroubové plochy: přímkové plochy.
13. týden: Šroubové plochy: cyklické plochy. Rozvinutelné plochy: rotační kužel a válec s řezem.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
Účast na cvičeních je povinná.