Detail předmětu
Praktika z bioinformatiky
FEKT-APBIAk. rok: 2018/2019
Předmět je zaměřen na praktické zvládnutí základních bioinformatických analýz DNA sekvencí a sekvencí proteinů. Především je orientován na zarovnávací algoritmy a algoritmy predikce sekundární struktury RNA a proteinů. Dále prohlubuje znalosti o možnostech číslicového zpracování genomických a proteomických dat. Studenti si prakticky vyzkouší základní možnosti fylogenetické analýzy na jimi zvoleném vhodném souboru dat. Studenti se naučí provádět analýzy sekvencí v programovacím jazyce R.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- nalézt v databázi GenBank nukleotidové sekvence kódující protein pro různé organismy a sekvence stáhnout ve vhodném formátu
- nalézt v databázi Uniprot sekvenci proteinu, která je kódována nukleotidovou sekvencí
- nalézt kódující oblasti v DNA sekvencích
- provést základní analýzy sekvencí v prostředí R
- použít zarovnávací algoritmy volně dostupné na internetu, vhodně zvolit zarovnávací parametry v závislosti na typu dat
- naprogramovat algoritmus pro zarovnání sekvencí s afinní penalizací
- predikovat sekundární strukturu proteinů pomocí online nástrojů
- predikovat pozitivní selekci v genech
- naprogramovat výpočet spektrogramů DNA sekvencí
- zkonstruovat fylogenetický strom z DNA sekvencí pomocí online nástrojů
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. Práce s knihovnou Biostrings.
3. Regulární výrazy a převody dat do různých formátů.
4. Vyhledávání exonů.
5. Zarovnávání s afinní penalizací.
6. Vícenásobné zarovnávání.
7. Konstrukce fylogenetickcýh stromů.
8. Vyhledávání pozitivní selekce.
9. Predikce RNA struktur.
10. Predikce proteinových struktur.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Cvičení na počítači
Vyučující / Lektor
Osnova
2. Zpracování genomových sekvencí pomocí základních pravidel statistiky.
3. Porovnávání sekvencí. Zarovnávání sekvencí. Míry shody.
4. Hledání vzorů v sekvencích.
5. Nelineární metody pro porovnávání vzorů, metoda dynamického borcení času.
6. Skryté Markovovy modely v úlohách rozpoznávání.
7. Hledání vzorů pomocí nelineárních metod pro klasifikační úlohy.
8. Shluková analýza s využitím nelineárních metod srovnávání.
9. Statistické vyhodnocení klasifikačních postupů, objemy zpracovávaných dat.
10. Expertní systém jako klasifikátor.
11. Prezentace samostatných prací.
12. Prezentace samostatných prací.
13. Zápočtový test.