Detail předmětu
Umělá inteligence v medicíně
FEKT-AUINAk. rok: 2018/2019
Předmět je orientován na základní typy neuronových sítí (se zpětným šířením chyby, Hammingova, Kohonenova síť). Druhá část je zaměřena na hierarchické a nehierarchické metody shlukové analýzy. Třetí část se zaměřuje na teorií fuzzy množin, fuzzy relací, fuzzy logiku, fuzzy inference a na postupy přibližného usuzování. Následuji metody pro výběr relevantních atributů a pro hodnocení výsledků dosažených pomocí výše popsaných prostředků umělé inteligence.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- ovládá principy neuronových sítí (se zpětným šířením chyby, Hammingova, Kohonenova síť),
- je schopen realizovat shlukovou analýzu pomocí nehierarchických a hierarchických metod,
- je schopen vysvětlit princip fuzzy inference a přibližného usuzování,
- je schopen provést výběr relevantních atributů pro následnou analýzu,
- je schopen provést hodnocení úspěšnosti algoritmů strojového učení,
- je schopen uvést příklady využití výše popsaných algoritmů v biomedicínských aplikacích.
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
- až 20 bodů za řešení zadaných úkolů v laboratorním cvičení (pro postup ke zkoušce je nutný zisk nenulového počtu bodů ze všech úkolů)
- až 80 bodů za zkoušku (ze zkoušky je nutné získat minimálně 40 bodů)
Osnovy výuky
2. Umělé neuronové sítě, neuron a jeho charakteristiky, neuron jako klasifikátor.
3. Učení neuronu s binárními a reálnými vstupy a výstupy, jednovrstvý perceptron.
4. Vícevrstvá dopředná síť, algoritmus zpětného šíření chyby.
5. Hammingova síť, Kohonenova síť.
6. Shluková analýza, hierarchické metody shlukové analýzy.
7. Nehierarchické metody shlukové analýzy, algoritmus k-průměrů.
8. Fuzzy množiny, fuzzy relace.
9. Logika, fuzzy logika, fuzzy inference, přibližné usuzování.
10. Výběr relevantních příznaků a dekorelace příznaků.
11. Hodnocení úspěšnosti klasifikačních, predikčních a aproximačních algoritmů.
12. Biomedicínské aplikace metod strojového učení.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
V zásadě:
- povinné počítačové cvičení (zmeškaná laboratorní cvičení musí být řádně omluvená a lze je nahradit po domluvě s vyučujícím)
- nepovinná přednáška
Základní literatura
Doporučená literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Umělé neuronové sítě, neuron a jeho charakteristiky, neuron jako klasifikátor.
3. Učení neuronu s binárními a reálnými vstupy a výstupy, jednovrstvý perceptron.
4. Vícevrstvá dopředná síť, algoritmus zpětného šíření chyby.
5. Hammingova síť, Kohonenova síť.
6. Shluková analýza, hierarchické metody shlukové analýzy.
7. Nehierarchické metody shlukové analýzy, algoritmus k-průměrů.
8. Fuzzy množiny, fuzzy relace.
9. Logika, fuzzy logika, fuzzy inference, přibližné usuzování.
10. Výběr relevantních příznaků a dekorelace příznaků.
11. Hodnocení úspěšnosti klasifikačních, predikčních a aproximačních algoritmů.
12. Biomedicínské aplikace metod strojového učení.
Cvičení na počítači
Vyučující / Lektor
Osnova
2. Neuronová síť bez učení.
3. Učení neuronu, δ-pravidlo.
4. Učení neuronové sítě, algoritmus zpětného šíření chyby (back propagation, BP).
5. Perceptron a BP síť v Neural Network Toolbox.
6. Hammingova síť.
7. Hierarchická shluková analýza.
8. Nehierarchická shluková analýza.
9. Fuzzy shluková analýza.
10. Fuzzy inferenční systém (FIS).
11. FIS ve Fuzzy Logic Toolbox.
12. PCA a komprese dat.