Detail předmětu
Matematika 2
FEKT-BMA2Ak. rok: 2018/2019
Funkce více proměnných, parciální derivace, gradient. Obyčejné diferenciální rovnice, základní pojmy, analytické metody řešení, příklady užití diferenciálních rovnic. Diferenciální počet v komplexním oboru, derivace funkce, Cauchy-Riemannovy podmínky, holomorfní funkce. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec, Laurentova řada, singulární body, residuová věta. Laplaceova transformace, pojem konvoluce, praktické aplikace. Fourierova transformace, souvislost s Laplaceovou transformací, ukázky použití. Z-transformace, diskrétní systémy, diferenční rovnice.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Osnovy výuky
2. Obyčejné diferenciální rovnice, základní pojmy.
3. Řešení lineární diferenciální rovnice prvního řádu.
4. Homogénní lineární diferenciální rovnice vyššího řádu.
5. Řešení nehomogénní lineární diferenciální rovnice vyššího řádu s konstantními koeficienty.
6. Diferenciální počet v komplexním oboru, derivace funkce,
7. Cauchy-Riemannovy podmínky, holomorfní funkce.
8. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec,
9. Laurentova řada, singulární body.
10. Residuová věta.
11. Laplaceova transformace, pojem konvoluce, praktické aplikace.
12. Fourierova transformace, souvislost s Laplaceovou transformací, ukázky použití.
13. Z-transformace, diskrétní systémy, diferenční rovnice.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Během semestru studenti vypracují dva hodnocené projekty spočívající v řešení individuálních početních úloh a napíší a dva testy hodnocené učitelem.
Základní literatura
Kolářová, E., Matematika 2, Sbírka úloh, FEKT VUT v Brně
Melkes, F., Řezáč, M., Matematika 2, FEKT VUT v Brně
Pírko, Z., Veit, J., Laplaceova transformace. Základy teorie a užití v praxi. SNTL Praha 1970
Zdeněk Svoboda, Jiří Vítovec: Matematika 2, FEKT VUT v Brně
Zařazení předmětu ve studijních plánech
- Program EEKR-B bakalářský
obor B-SEE , 1 ročník, letní semestr, povinný
obor B-TLI , 1 ročník, letní semestr, povinný
obor B-EST , 1 ročník, letní semestr, povinný
obor B-MET , 1 ročník, letní semestr, povinný
obor B-AMT , 1 ročník, letní semestr, povinný - Program IBEP-T bakalářský
obor T-IBP , 1 ročník, letní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Obyčejné diferenciální rovnice prvního řádu (separovatelná rovnice, lineární rovnice, metoda variace konstanty).
3. Lineární diferenciální rovnice n-tého řádu s konstantními koeficienty.
4. Funkce komplexní proměnné - transformace komplexní roviny. Základní transcendentní funkce.
5. Derivace komplexní funkce, Cauchy-Riemannovy podmínky, holomorfní funkce.
6. Integrální počet v komplexním oboru, Cauchyova věta, Cauchyův vzorec.
7. Laurentova řada, singulární body a jejich klasifikace, pojem rezidua a reziduová věta.
8. Přímá Laplaceova transformace, pojem konvoluce, gramatika transformace.
9. Zpětná Laplaceova transformace, impulzy, elektrické obvody.
10. Fourierovy řady, trigonometrický a exponenciální tvar, základní vlastnosti.
11. Přímá a zpětná Fourierova transformace, souvislost s Laplaceovou transformací, šířka impulzu a šířka spektra.
12. Přímá a zpětná transformace Z.
13. Použití Z transformace při řešení diferenčních rovnic.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
Cvičení odborného základu
Vyučující / Lektor