Detail předmětu
Vybrané partie z matematiky II.
FEKT-BVPMAk. rok: 2018/2019
Obsahem předmětu jsou základy výpočtu nevlastního vícerozměrného integrálu a základy řešení lineárních diferenciálních rovnic užitím delta funkce a váhové funkce.
Po seznámení se základními pojmy je hlavní pozornost zaměřena na výpočty nevlastních vícerozměrných integrálů na neohraničených množinách a z neohraničených funkcí.
V části lineárních diferenciálních rovnic se probírají metody řešení lineárních diferenciálních rovnic a soustav lineárních rovnic a to eliminační metoda, metoda vlastních čísel a vektorů, metoda variace konstant, metoda neurčitých koeficientů včetně stability řešení.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- vypočítat nevlastní integrál na neohraničených množinách a z neohraničených funkcí.
- aplikovat váhovou funkci a delta funkci na řešení lineárních diferenciálních rovnic.
- zvolit optimální metodu řešení pro danou diferenciální rovnici
- vyšetřit stabilitu řešení systémů diferenciálních rovnic.
Prerekvizity
Z předmětů BMA1, BMA2 jsou požadovány základní znalosti diferenciálního počtu funkce jedné proměnné a více proměnných, integrálního počtu funkce jedné proměnné a základní metody řešení lineárních diferenciálních rovnic s konstantními koeficienty. Především by student měl umět derivovat (včetně parciálních derivací) a integrovat.
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Závěrečná písemná zkouška je hodnocena maximálně 70 body a skládá se ze 7 příkladů (1 z nevlastního vícerozměrného integrálu (10 bodů), 3 z aplikací váhové a delta funce ( 3 x 10 bodů) a 3 z analytických metod řešení diferenciálních rovnic (3 x 10 bodů))
Osnovy výuky
2) Nevlastní vícerozměrný integrál
3) Impulzní funkce a delta funkce, základní vlastnosti.
4) Derivace a integrál delta funkce
5) Jednotková funkce a její vztah s delta funkcí, váhová funkce.
6) Řešení diferenciálních rovnic n-tého řádu užitím váhových funkcí
7) Vztah Diracovy funkce a váhové funkce
8) Systémy diferenciálních rovnice a jejich vlastnosti.
9) Eliminační metoda řešení.
10) Metoda vlastních čísel a vlastních vektorů.
11) Variace konstant a metoda neurčitých koeficientů
12) Diferenciální transformační metoda řešení obyčejných diferenciálních rovnic
13) Diferenciální transformační metoda řešení funkcionálních rovnic
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Doporučená literatura
GARNER, L.E.: Calculus and Analytical Geometry. Brigham Young University, Dellen publishing Company, San Francisco,1988, ISBN 0-02-340590-2.
KRUPKOVÁ, V.: Diferenciální a integrální počet funkce více proměnných,skripta VUT Brno, VUTIUM 1999, 123s.
Zařazení předmětu ve studijních plánech
- Program EEKR-B bakalářský
obor B-SEE , 3 ročník, zimní semestr, volitelný mimooborový
obor B-TLI , 3 ročník, zimní semestr, volitelný mimooborový
obor B-EST , 3 ročník, zimní semestr, volitelný mimooborový
obor B-MET , 3 ročník, zimní semestr, volitelný mimooborový
obor B-AMT , 3 ročník, zimní semestr, volitelný mimooborový - Program EEKR-CZV celoživotní vzdělávání (není studentem)
obor ET-CZV , 1 ročník, zimní semestr, volitelný mimooborový
- Program IT-BC-3 bakalářský
obor BIT , 2 ročník, zimní semestr, volitelný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2) Nevlastní vícerozměrný integrál
3) Impulzní funkce a delta funkce, základní vlastnosti.
4) Derivace a integrál delta funkce
5) Jednotková funkce a její vztah s delta funkcí, váhová funkce.
6) Řešení diferenciálních rovnic n-tého řádu užitím váhových funkcí
7) Vztah Diracovy funkce a váhové funkce
8) Systémy diferenciálních rovnice a jejich vlastnosti.
9) Eliminační metoda řešení.
10) Metoda vlastních čísel a vlastních vektorů.
11) Variace konstant a metoda neurčitých koeficientů
12) Diferenciální transformační metoda pro obyčejné diferenciální rovnice
13) Diferenciální transformační metoda pro diferenciální rovnice se zpožděným argumentem