Detail předmětu
Matematika 2
FP-ma2PAk. rok: 2018/2019
Předmět je součástí teoretického základu oboru. Cílem je naučit studenty s porozuměním využívat aparátu číselných řad, Taylorovu metodu pro přibližný výpočet hodnot funkce, neurčitého a určitého integrálu funkce 1 proměnné, řešení 2 typů vybraných diferenciálních rovnic, základů teorie funkcí 2 reálných proměnných, základů logiky a teorie grafů (včetně aplikací v ekonomických disciplínách).
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
-aktivní účast ve cvičení, prezence na cvičení je povinná,
-plnění individuálních úkolů a zadávaných písemných prací,
-absolvování kontrolních testů během semestru s hodnocením alespoň (E).
Zkouška má část písemnou a ústní, přičemž těžiště zkoušky tvoří část písemná.
Osnovy výuky
1. Řady čísel (součet, konvergence a divergence, řady s nezápornými členy, absolutně a relativně konvergentní a alternující řady a jejich vlastnosti)
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
MEZNÍK, I. Základy matematiky pro ekonomii a management. Základy matematiky pro ekonomii a management. 2017. s. 5-443. ISBN: 978-80-214-5522-1. (CS)
Mezník,I.: Matematika II.FP VUT v Brně, Brno 2009 (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)
Cvičení
Vyučující / Lektor
Osnova