Detail předmětu

Matematika 2

FP-ma2PAk. rok: 2018/2019

Předmět je součástí teoretického základu oboru. Cílem je naučit studenty s porozuměním využívat aparátu číselných řad, Taylorovu metodu pro přibližný výpočet hodnot funkce, neurčitého a určitého integrálu funkce 1 proměnné, řešení 2 typů vybraných diferenciálních rovnic, základů teorie funkcí 2 reálných proměnných, základů logiky a teorie grafů (včetně aplikací v ekonomických disciplínách).

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Získané vědomosti a praktické matematické dovednosti budou zejména oporou pro získávání dalších vědomostí a rozšiřování dalších dovedností v oborech s ekonomickým zaměřením, pro korektní využívání matematických software a dále důležitým východiskem pro osvojování nových poznatků v předmětech matematického charakteru.

Prerekvizity

Učivo středoškolské matematiky a předmětu Matematika I.

Plánované vzdělávací činnosti a výukové metody

Výuka je rozdělena na přednášky a cvičení. Přednášky se zaměřují na výklad teorie s poukazem na aplikace, cvičení na praktické výpočty a aplikační úlohy.

Způsob a kritéria hodnocení

Požadavky pro udělení zápočtu:
-aktivní účast ve cvičení, prezence na cvičení je povinná,
-plnění individuálních úkolů a zadávaných písemných prací,
-absolvování kontrolních testů během semestru s hodnocením alespoň (E).

Zkouška má část písemnou a ústní, přičemž těžiště zkoušky tvoří část písemná.

Osnovy výuky

Cílem je vybudovat matematický aparát nezbytný pro výklad navazujících odborných předmětů a zvládnout úvahy a výpočty v oblasti dané osnovou předmětu (i s ohledem na používání výpočetní techniky) včetně aplikací v informatice a ekonomických disciplínách. Získané matematické vědomosti a praktické výpočetní dovednosti jsou zejména důležitým východiskem pro osvojování nových poznatků v informatice a oborech s ekonomickým zaměřením, oporou pro korektní využívání matematických software i pro další rozšiřování vědomostí a dovedností v navazujících předmětech matematického charakteru.
1. Řady čísel (součet, konvergence a divergence, řady s nezápornými členy, absolutně a relativně konvergentní a alternující řady a jejich vlastnosti)
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)


Učební cíle

Cílem je naučit studenty aplikovat uvedené poznatky a metody k analýze praktických procesů popsaných uvedenými matematickými modely a řešit je včetně aplikací v ekonomických disciplínách (výpočty realizovat i s ohledem na používání výpočetní techniky).

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách není kontrolována. Účast ve cvičeních je povinná a je systematicky kontrolována. Student je povinen neúčast omluvit. Je plně v kompetenci učitele posoudit důvodnost omluvy. Formy nahrazení zameškané výuky stanoví učitel individuálně.

Základní literatura

MEZNÍK, I. Diskrétní matematika pro užitou informatiku. CERM. CERM. Brno: CERM, s.r.o., 2013. 185 s. ISBN: 978-80-214-4761- 5. (CS)
MEZNÍK, I. Základy matematiky pro ekonomii a management. Základy matematiky pro ekonomii a management. 2017. s. 5-443. ISBN: 978-80-214-5522-1. (CS)
Mezník,I.: Matematika II.FP VUT v Brně, Brno 2009 (CS)

Zařazení předmětu ve studijních plánech

  • Program BAK bakalářský

    obor BAK-EP , 1 ročník, letní semestr, povinný
    obor BAK-UAD , 1 ročník, letní semestr, povinný

  • Program BAK-EP bakalářský 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., povinná

Vyučující / Lektor

Osnova

1. Řady čísel (součet, konvergence a divergence, řady s nezápornými členy, absolutně a relativně konvergentní a alternující řady a jejich vlastnosti)
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)


Cvičení

13 hod., povinná

Vyučující / Lektor

Osnova

Výuka je rozdělena na přednášky a cvičení. Přednášky se zaměřují na výklad teorie s poukazem na aplikace, cvičení na praktické výpočty a aplikační úlohy.