Detail předmětu

Applied Analytical Statistics

FP-ERBAASEAk. rok: 2018/2019

Studenti získají základní znalosti náhodných veličin diskrétního, spojitého typu a jejich důležitých typů rozdělení, zpracování datových souborů kvantitativního a kvalitativního znaku, bodových a intervalových odhadů, nejpoužívanějších parametrických testů a testů dobré shody, jednoduchých a složených indexů, lineárních a nelineárních regresních modelů a analýzy časových řad.

Jazyk výuky

angličtina

Počet kreditů

4

Zajišťuje ústav

Nabízen zahraničním studentům

Všech fakult

Výsledky učení předmětu

Studenti získají základní znalosti náhodných veličin diskrétního, spojitého typu a jejich důležitých typů rozdělení, zpracování datových souborů kvantitativního a kvalitativního znaku, bodových a intervalových odhadů, nejpoužívanějších parametrických testů a testů dobré shody, jednoduchých a složených indexů, lineárních a nelineárních regresních modelů a analýzy časových řad, a budou schopni tyto znalosti za pomoci statistických programů vhodně aplikovat v reálném podnikatelském prostředí tak, aby byli schopni obdržet relevantní informace potřebné pro podporu řízení podnikatelských činností.

Prerekvizity

Základy lineární algebry, matematické analýzy a pravděpodobnosti.
Množiny, množinové operace, pojmy z kombinatoriky, derivace, integrál, klasická pravděpodobnost, podmíněná pravděpodobnost.

Plánované vzdělávací činnosti a výukové metody

Výuka probíhá formou přednášek, které mají charakter výkladu základních principů, metodologie dané disciplíny a problémů. Cvičení podporují zejména praktické ovládnutí látky vyložené na přednáškách.

Způsob a kritéria hodnocení

Výsledná známka, která odpovídá součtu dosažených bodů (max. 100 bodů), se skládá z:
- Bodů dosažených z odpovědí na teoretické otázky,
- Bodů dosažených z výpočtových úloh.
Student získá hodnocení po krátkém rozhovor s učitelem, kdy se vyhodnocuje jeho / její práci.
Známky a jim odpovídající body:
(100-91), B (90-81), C (80 až 71), D (70 až 61), E (60-50), F (49-0).

Osnovy výuky

1. týden. Náhodné veličiny (diskrétní a spojité), jejich číslené charakteristiky (střední hodnota, rozptyl, směrodatná odchylka) a zákony rozdělení (distribuční funkce, pravděpodobnostní funkce, hustota pravděpodobnosti).
2. týden. Speciální typy rozdělení diskrétní a spojité náhodné veličiny (binomické, geometrické, hypergeometrické, normální, exponenciální a logaritmicko-normální rozdělení).
3. týden. Dvourozměrný náhodný vektor a jeho charakteristiky (koeficient kovariance a korelace).
4. týden. Základní pojmy matematické statistiky a zpracování malých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
5. týden. Zpracování velkých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
6. týden. Bodové a intervalové odhady parametrů znaku základního souboru.
7. týden. Základní pojmy, principy a postupy testování statistických hypotéz.
8. týden. Základní parametrické testy (jednovýběrový a dvouvýběrový t-test, F-test) a testy dobré shody (Pearsonův test, Kolmogorovův-Smirnovův test).
9. týden. Základní pojmy z indexní analýzy (intenzitní ukaztel, extenzitní ukazatel, index).
10. týden. Jednoduché a složené (individuální a agregátní) indexy.
11. týden. Základní pojmy a principy regresní analýzy, metoda nejmenších čtverců a lineární regresní funkce.
12. týden. Nelineární regresní funkce (linearizovatelné a speciální nelinearizovatelné), volba vhodné regresní funkce.
13. týden. Základní charakteristiky časových řad (první diference, keoficient růstu), dekompozice časových řad (trendová a sezónní složka časových řad).

Učební cíle

Studenti budou seznámeni se základními pojmy náhodných veličin dikrétního, spojitého typu a jejich důležitých rozdělení, zpracování datových souborů, bodových a intervalových odhadů, testování statistických hypotéz, lineárních a nelineárních regresních modelů a analýzy časových řad. Studenti budou schopni využít příslušné metody při řešení informatických a ekonomických problémů. Po absolvování předmětu budou studenti připraveni za pomoci statistických programů prakticky použít tyto metody v navazujících informatických a ekonomických předmětech.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách není povinná ale doporučuje se. Účast na cvičeních je kontrolovaná.

Základní literatura

MATHEWS, P. Design of Experiments with Minitab. Milwaukee: ASQ Quality Press, 2005. ISBN 978-08-738-9637-5.
WONNACOTT, T.H. a R.J. WONNACOTT. Introductory Statistics. 5.ed. New York:Wiley, 1990. 736 s. ISBN 978-0471615187.

Doporučená literatura

BOX, George E. P., William Gordon HUNTER a J. Stuart HUNTER, 1978. Statistics for experimenters: an introduction to design, data analysis, and model building. B.m.: Wiley. ISBN 978-0-471-09315-2.
KARPÍŠEK, Z. a M. DRDLA. Applied Statistics. Brno University of Technology, Faculty of Business and Management. Brno, 1999. ISBN 80-214-1493-6.
MONTGOMERY, Douglas C., 2008. Design and Analysis of Experiments. B.m.: John Wiley & Sons. ISBN 978-0-470-12866-4.

Zařazení předmětu ve studijních plánech

  • Program BAK-Z bakalářský

    obor BAK-Z , 1 ročník, letní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

13 hod., nepovinná

Vyučující / Lektor

Osnova

1. týden. Náhodné veličiny (diskrétní a spojité), jejich číslené charakteristiky (střední hodnota, rozptyl, směrodatná odchylka) a zákony rozdělení (distribuční funkce, pravděpodobnostní funkce, hustota pravděpodobnosti).
2. týden. Speciální typy rozdělení diskrétní a spojité náhodné veličiny (binomické, geometrické, hypergeometrické, normální, exponenciální a logaritmicko-normální rozdělení).
3. týden. Dvourozměrný náhodný vektor a jeho charakteristiky (koeficient kovariance a korelace).
4. týden. Základní pojmy matematické statistiky a zpracování malých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
5. týden. Zpracování velkých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.
6. týden. Bodové a intervalové odhady parametrů znaku základního souboru.
7. týden. Základní pojmy, principy a postupy testování statistických hypotéz.
8. týden. Základní parametrické testy (jednovýběrový a dvouvýběrový t-test, F-test) a testy dobré shody (Pearsonův test, Kolmogorovův-Smirnovův test).
9. týden. Základní pojmy z indexní analýzy (intenzitní ukaztel, extenzitní ukazatel, index).
10. týden. Jednoduché a složené (individuální a agregátní) indexy.
11. týden. Základní pojmy a principy regresní analýzy, metoda nejmenších čtverců a lineární regresní funkce.
12. týden. Nelineární regresní funkce (linearizovatelné a speciální nelinearizovatelné), volba vhodné regresní funkce.
13. týden. Základní charakteristiky časových řad (první diference, keoficient růstu), dekompozice časových řad (trendová a sezónní složka časových řad).

Cvičení

26 hod., povinná

Vyučující / Lektor