Detail předmětu

Umělá inteligence

FEKT-LUINAk. rok: 2019/2020

Předmět je zaměřen na prohloubení znalostí a aplikaci metod z oblasti umělé inteligence. Umělá inteligence – definice, směry vývoje. Umělé neuronové sítě, paradigmata neuronových sítí, metoda učení backpropagation, Kohonenovy samoorganizační mapy, Hopfieldova síť, RCE neuronová síť. Znalostní systémy, reprezentace znalostí, řešení úloh, struktura a činnost expertních systémů. Zpracování optické informace prostředky umělé inteligence. Inteligentní robot.

Jazyk výuky

čeština

Počet kreditů

6

Výsledky učení předmětu

Absolvent předmětu by měl být schopen:
- vysvětlit pojem umělá inteligence z pohledu její aplikace v technických zařízení,
- vysvětlit paradigma pro umělé neuronové sítě: perceptron, vícevrstvá neuronová síť s učením backpropagation, Kohonenovy samoorganizační mapy, Hopfieldova síť, RCE neuronová síť,
- diskutovat a ověřit nastavení jednotlivých parametrů zvolené neuronové sítě,
- posoudit oblast použití jednotlivých umělých neuronových sítí,
- vysvětlit architekturu a funkčnost znalostních systémů,
- vytvořit bázi znalosti pro expertní systém NPS32,
- zvolit oblasti použití expertních systémů,
- aplikovat zpracování optické informace prostředky umělé inteligence.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky a cvičení na počítači. Student odevzdává sedm samostatných projektů.

Způsob a kritéria hodnocení

Studenti jsou hodnoceni průběžně během studia na cvičeních. Za semestr tak mohou získat max. 30 bodů. Podmínkou udělení zápočtu je účast na povinné části výuky.
Závěrečná zkouška je hodnocena max. 70ti body, ústní zkouška max. 10ti body.

Osnovy výuky

1. Organizace výuky, umělá inteligence
2. Neurověda, kybernetika
3. Umělé neuronové sítě - paradigmata, Perceptron
4. Umělé neuronové sítě – Back propagation
5.Umělé neuronové sítě - Hopfield, Kohonen, RCE
6. státní svátek 2019
7. Počítačové vidění
8. Počítačové vidění
9. Expertní systémy
10. Expertní systémy
11. Konvoluční neuronové sítě
12. Konvoluční neuronové sítě
13. Inteligentní systémy

Učební cíle

Cílem předmětu je poskytnou studentům základní orientaci v klíčových algoritmech a teorii umělé inteligence, důraz je kladen na oblasti umělých neuronových sítí, znalostních systémů a počítačového vidění.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Počítačová cvičení jsou povinná, řádně omluvené zmeškané počítačové cvičení lze po domluvě s vyučujícím nahradit.

Základní literatura

Berka P. a kol.: Expertní systémy. Skripta, VŠE Praha, 1998. (CS)
Kasabov,N.K.: Foundations of Neural Networks, Fuzzy systems and Knowledge Engineering.The MIT Press,1996,ISBN 0-262-11212-4 (EN)
Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 1. ACADEMIA 1993,Praha,ISBN 80-200-0496-3 (CS)
Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 2. ACADEMIA 1997,Praha,ISBN 80-200-0504-8 (CS)
Sonka M., Hlavac V., Boyle R.: Image Processing, Analysis and Machine Vision. Thomson, 2008, ISBN 978-0-495-08252-1 (EN)
Šíma J., Neruda R.: Teoretické otázky neuronových sítí. Matfyzpress, Praha 1996 (CS)

Doporučená literatura

Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 3. ACADEMIA 2001,Praha,ISBN 80-200-0472-6 (CS)
Mařík V.-Štěpánková O.-Lažanský J.:Umělá inteligence 4. ACADEMIA 2003,Praha,ISBN 80-200-1044-0 (CS)
Schalkoff,R.J.:Artificial Neural Networks. The MIT Press,1997,ISBN 0-07-115554-6 (EN)

Zařazení předmětu ve studijních plánech

  • Program EEKR-ML1 magisterský navazující

    obor ML1-KAM , 2 ročník, zimní semestr, povinný

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

1. Organizace výuky, umělá inteligence
2. Neurověda, kybernetika
3. Umělé neuronové sítě - paradigmata, Perceptron
4. Umělé neuronové sítě – Back propagation
5.Umělé neuronové sítě - Hopfield, Kohonen, RCE
6. státní svátek 2019
7. Počítačové vidění
8. Počítačové vidění
9. Expertní systémy
10. Expertní systémy
11. Konvoluční neuronové sítě
12. Konvoluční neuronové sítě
13. Inteligentní systémy

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

1. Úvod, projekty – zadání
2. Základy Matlabu a Počítačového vidění
3. Perceptron
4. Jednovrstvá neuronová síť
5. Back propagation
6. Projekt (práce doma)
7. Umělé neuronové sítě
8. Počítačové vidění - Konvoluce
9. Expertní systémy
10. Projekt 1 – Referát
11. Projekt 1 – Referát
12. Expertní systémy
13. Expertní systémy