Detail předmětu

Numerické metody III

FSI-SN3Ak. rok: 2019/2020

Obsahem předmětu Numerické metody III jsou matematické základy metody konečných prvků a dále také výklad vybraných algoritmů pro řešení základních inženýrských úloh metodou konečných prvků. Samotnému výkladu předchází úvod do teorie Soboleových prostorů, který tvoří základ matematického aparátu. Dále je vyložen pojem slabého řešení okrajového problému eliptické parciální diferenciální rovnice a konstrukce jeho aproximace metodou konečných prvků. Jsou probírány různé typy konečných prvků, teorie interpolace a numerické integrace v metodě konečných prvků. Je analyzována konvergence různých přibližných řešení. Pomocí lineárního trojúhelníkového prvku sestaví a odladí své vlastní programy pro řešení eliptické, parabolické a hyperbolické úlohy a úlohy vlastních čísel.

Jazyk výuky

čeština

Počet kreditů

3

Zajišťuje ústav

Výsledky učení předmětu

Teorie Soboleových prostorů, teorie interpolace a teorie numerické integrace na konečných prvcích jsou základními matematickými prostředky metody konečných prvků. Programování algoritmů založených na lineárním trojúhelníkovém prvku je základem pro pochopení pokročilejších impelementačních technik používaných v metodě konečných prvků.

Prerekvizity

Diferenciální a integrální počet funkcí více proměnných. Základy funkcionální analýzy, parciální diferenciální rovnice. Numerické metody, zejména interpolace, integrace a řešení soustav ODR. Programování v prostředí Matlabu a Visual Studia.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Klasifikovaný zápočet se uděluje na základě následujících podmínek: 30% týdenní úlohy na programování, 70% samostatný projekt. Za aktivní přínos ve výuce lze získat zvláštní ohodnocení. Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).

Učební cíle

Cílem předmětu je seznámit studenty se základy teorie metody konečných prvků, aby byli schopni samostatně studovat práce a knihy v tomto oboru a příbuzných oborech. Dalším cílem je pochopení algoritmizace a standardních programátorských technik používaných při implementaci metody konečných prvků.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.

Základní literatura

A. Ern, J.-L. Guermond: Theory and Practice of Finite Elements, Springer Series in Applied Mathematical Sciences, Vol. 159 (2004) 530 p., Springer-Verlag, New York (EN)

Zařazení předmětu ve studijních plánech

  • Program M2A-P magisterský navazující

    obor M-MAI , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

První čtyři přednášky budou věnovány popisu algoritmu pro řešení modelové úlohy typu "stacionární vedení tepla" v rovinné polygonální oblasti pomocí lineárních trojúhelníkových konečných prvků. To umožní začít ve cvičeních od samého počátku experimentovat s programováním. Další přednášky se budou věnovat matematické teorii metody konečných prvků.
1. Klasická a variační formulace, triangulace, po částech lineární funkce.
2. Diskrétní variační formulace, elementární matice a vektory.
3. Elementární matice a vektory - pokračování.
4. Sestavení globální soustavy algebraických rovnic, její řešení, postprocessing.
5. Některé poznatky z funkcionální analýzy. Prostor W^k_2.
6. Stopy funkcí z prostoru W^k_2. Friedrichsova nerovnost a Poincareho nerovnost.
7. Bramble-Hilbertovo lemma. Sobolevova věta o vnoření.
8. Formální ekvivalence eliptického okrajového problému a příslušného
variačního problému. Existence a jednoznačnost řešení variačního problému.
9. Konečněprvkové prostory Lagrangeova typu. Definice přibližného řešení. Věta o existenci a jednoznačnosti přibližného řešení.
10. Transformace trojúhelníku na referenční trojúhelník. Vztahy mezi normami na obecném trojúhelníku a referenčním trojúhelníku.
11. Interpolační věta.
12. Numerická integrace.
13. Adaptivní techniky MKP.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Cvičení probíhají u počítačů, používá se MATLAB a Visual Studio. Algoritmus pro eliptickou úlohu bude vyložen v prvních čtyřech přednáškách. Algoritmus řešení parabolické a hyperbolické úlohy a algoritmus pro výpočet vlastních čísel bude stručně vyložen ve cvičeních. Předpokládá se samostatná práce studentů při práci s učebním textem (obsahujícím detailní popis algoritmů) a při programování v MATLABu.
1-2. Programovací nástroje, úvod.
3-4. Příprava na programování eliptické úlohy (stacionární vedení tepla).
5-6. Vývoj programu eliptické úlohy, výklad algoritmu parabolické úlohy (nestacionární vedení tepla).
7-8. Vývoj programu parabolické úlohy, výklad algoritmu hyperbolické úlohy (kmitání membrány).
9-10. Vývoj programu pro hyperbolickou úlohu, výklad algoritmu pro výpočet vlatních čísel.
11-12. Vývoj programu pro výpočet vlastních čísel.
13. Rezerva cvičícího.