Detail předmětu

Vyšší metody zpracování signálů

FEKT-LMZSAk. rok: 2020/2021

Formalizovaná optimální filtrace a restaurace signálů ve sjednoceném pohledu: Wienerův klasický filtr, Wiener-Levinsonův diskretní filtr, Kálmánova filtrace, modelování zdrojů signálů a restaurace signálů, další přístupy. Adaptivní filtrace a identifikace, algoritmy adaptace, typizace aplikací adaptivních filtrů. Neuronové sítě - vrstevnaté, zpětnovazební a sebeučící - a jejich využití pro zpracování a klasifikaci signálů. Nelineární filtrace - polynomiální a třídicí filtry, homomorfická filtrace a dekonvoluce, nelineární přizpůsobené filtry. Typické aplikace uvedených metod.

Jazyk výuky

čeština

Počet kreditů

6

Výsledky učení předmětu

Absolvent předmětu
- ovládá principy vyšších metod zpracování signálů a rozumí jejich souvislostem,
- je schopen zvolit vhodnou metodu pro konkrétní praktický účel,
- je schopen zvolenou metodu v podobě komerčního nebo vlastního programu implementovat ve výpočetním prostředí
- je schopen správně interpretovat výsledky analýz.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia, zejména číslicové zpracování signálů

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT. Metody vyučování zahrnují přednášky a cvičení na počítači. Předmět využívá e-learning (Moodle).

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu upřesňuje každoročně aktualizovaná vyhláška garanta předmětu;
v zásadě
- získání zápočtu na základě aktivní účasti na demonstračních cvičeních (až 24 bodů, min. 12 bodů),
- úspěšné složení písemné závěrečné zkoušky (až 76 bodů)

Osnovy výuky

1. Identifikace náhodných signálů. Úvod do restaurace signálů, formalizovaná optimální LMS restaurace signálů ve sjednoceném pohledu
2. Wienerův filtr v klasické i zobecněné diskretní reprezentaci
3. Kálmánova filtrace skalární a vektorová, modelování zdrojů signálu
4. Principy adaptivní filtrace, algoritmy adaptace
5. Aplikace adaptivní filtrace a jejich typizace
6. Úvod do nelineární filtrace - polynomiální a třídicí filtry, homomorfická filtrace a dekonvoluce, nelineární přizpůsobené filtry
7. Úvod do neuronových sítí, jednotlivý neuron a jeho učení
8. Dopředné vrstevnaté neuronové sítě s učením zpětným šířením chyby, sítě s radiální bází
9. Sítě se vzájemnými vazbami: Hopfieldovy a Boltzmannovy sítě, soutěživé a Jordanovy sítě
10. Samoorganizující se sítě, Kohonenovy mapy
11. Aplikace neuronových sítí ve zpracování a analýze signálů a obrazů
12. Analýza hlavních komponent ve zpracování signálů
13. Analýza nezávislých komponent ve zpracování signálů.

Učební cíle

Cílem předmětu je porozumění principům vyšších metod zpracování signálů a jejich souvislostem a ukázání praktických aplikací.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu (viz Rozvrhové jednotky).
V zásadě:
- povinné počítačové cvičení
- nepovinná přednáška

Základní literatura

J.Jan: Číslicová fitlrace, analýza a restaurace aignálů. VUTIUM 2002
J.Jan: Digital Signal Filtering, Analysis and Restoration. IEE Publishing, London, UK, 2000

Zařazení předmětu ve studijních plánech

  • Program EEKR-ML1 magisterský navazující

    obor ML1-BEI , 1 ročník, letní semestr, volitelný oborový

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

Hlubší pohled na lineární filtry, stavový model. Návrh filtrů typu FIR a IIR.
Nelineární filtrace,polynomiální filtry,zobecněná a adaptivní mediánová filtrace, homomorfická filtrace. Nelineární přizpůsobené filtry.
Klasické a moderní metody identifikace statistických vlastností stochastických signálů.
Sjednocující pohled na metody formalizované restaurace signálů. Diskretní Wienerův filtr jako zlatý standard
Kalmanova filtrace, stacionární a nestacionární případ, aplikace v restauraci signálů a modelování jejich zdrojů.
Restaurace ve frekvenční oblasti. Vázaná dekonvoluce, dekonvoluce s optimalizací impulsní charakteristiky.
Koncept adaptivní filtrace, filtr s rekurzivní optimální adaptací. Filtr se stochasticky gradientní adaptací.
Typizace aplikací adaptivní filtrace:identifikace a modelování systémů, ekvalizace kanálu, lineární adaptivní predikce, adaptivní potlačování rušení a šumu.
Úvod do architektur a vlastností neuronových sítí: dopředné sítě, učení, zobecňování znalostí; sítě se zpětnými vazbami; samoorganizující se mapy.
Zpracování signálů neuronovými sítěmi: naučený a adaptivní neuronový filtr, formalizovaná restaurace signálů zpětnovazební neuronovou sítí.
Typické aplikace v komunikacích, ve zpracování řeči a akustických signálů.
Typické aplikace zpracování měřicích a diagnostických signálů, identifikaci systémů a v biomedicínských aplikacích.

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Osnova

Seznámení s prostředím MATLAB - Signal Processing Toolbox a DSP Bockset
Návrh a ověření filtru typu FIR nebo IIR.
Aplikace adaptivní mediánové filtrace nebo homomorfické filtrace.
Identifikace statistických vlastností zadaných stochastických signálů.
Návrh a použití diskretního Wienerova filtru
Kalmanova filtrace, aplikace v modelování zdrojů signálů
Restaurace modifikovaným inversním filtrem ve frekvenční oblasti
Experiment s adaptivním filtrem se stochasticky gradientní adaptací
Adaptivní potlačování daného rušení
Experiment s dopřednou sítí, učení a zobecňování znalostí
Zpracování signálů naučeným neuronovým filtrem
Aplikace zadaných metod ve zpracování akustických signálů
Aplikace ve zpracování zadaných měřicích a diagnostických signálů