Detail předmětu
Konstitutivní vztahy materiálu
FSI-RK0Ak. rok: 2020/2021
Předmět podává ucelený přehled konstitutivních závislostí látek, a to nejen materiálů v užším smyslu, tedy látek tuhých, ale i kapalných a plynných, vymezuje pojem konstitutivní modely. Detailně se věnuje materiálům vykazujícím velké deformace, a to nelineárně elastickým i neelastickým, izotropním i anizotropním. Pro každý z uváděných modelů materiálu jsou formulovány základní konstitutivní rovnice, z nichž se pak odvozuje mechanická odezva materiálu, a to jak analytickými metodami, tak pomocí MKP, včetně praktické aplikace v programu ANSYS.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Holzapfel G.A.: Nonlinear Solid Mechanics
Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials
Doporučená literatura
Elearning
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Jednoduché konstitutivní modely - přehled. Lineární a nelineární modely elasticity.
3. Úvod do tenzorového počtu, značení a vlastnosti tenzorů, základní operace s tenzory.
4. Tenzory napětí a deformace při velkých přetvořeních, jejich invarianty a dekompozice na kulovou a deviátorovou složku.
5. Hyperelastické modely pro izotropní málo stlačitelné elastomery na bázi polynomů.
6. Další hyperelastické modely, modely pro snadno stlačitelné elastomery (pěnové pryže), , poroelastické modely.
7. Anizotropní hyperelastické modely pro elastomery s výztužnými vlákny. Pseudoinvarianty deformačního tenzoru.
8. Modely zahrnující neelastické efekty u elastomerů.
9. Konstitutivní modely newtonských a nenewtonských kapalin.
10. Kombinované modely. Úvod do teorie viskoelasticity.
11. Modely lineární viskoelasticity - odezva na statické a dynamické zatěžování.
12. Komplexní modul pružnosti, relaxační a creepové funkce, nelineární viskoelasticita.
13. Ostatní kombinované modely - základní konstitutivní charakteristiky. Mikropolární modely kontinua. Cosseratovo kontinuum.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. Maticový a tenzorový tvar Hookeova zákona. Multilineárně elastický model.
3. Základní operace s tenzory – tenzorový součin, úžení tenzoru.
4. Invarianty tenzoru deformace, modifikované invarianty.
5. Hyperelastické modely v ANSYSu - zkoušky elastomerů a jejich zadávání do konstitutivního modelu.
6. Výběr vhodného konstitutivního modelu nestlačitelného elastomeru, predikční schopnost modelu.
7. Adaptace konstitutivního modelu na požadovaný rozsah deformace.
8. Anizotropní hyperelastické modely, modely pěnových pryží.
9. Newtonská kapalina. Lineární viskoelasticita – chování Maxwellova a Voigtova modelu.
10. Lineární viskoelasticita - chování Kelvinova a zobecněného Maxwellova modelu.
11. Používání experimentálních dat u modelů lineární a nelineární viskoelasticity.
12. Teplotní závislost viskoelastických parametrů a její modelování v MKP.
13. Semestrální projekt, zápočet.
Elearning