Detail předmětu
Optimalizace II
FSI-SO2-AAk. rok: 2020/2021
Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
jejího přednesení v kolektivu zúčastněných studentů.
Učební cíle
Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
zameškaná výuka je nahrazována samostatným řešením zadaných úloh.
Základní literatura
Kall, P.-Wallace,S.W.: Stochastic Programming, 2nd edition (open access), Wiley 2003. (EN)
Prekopa, A: Stochastic Programming, 2nd edition, Springer, 2010. (EN)
Doporučená literatura
Kall, P.-Wallace,S.W.: Stochastic Programming, 2nd edition (open access), Wiley 2003. (EN)
King, A.J., Wallace, S.W.: Modeling with Stochastic Programming, Springer Verlag, 2014. (EN)
Shapiro, A., Dentcheva, D., and Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory (3rd Edition). SIAM, Philadelphia, 2021. (EN)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.
Účast na cvičení je povinná.