Detail předmětu
Matematika - Základní statě
FSI-RMBAk. rok: 2020/2021
Kurs obsahuje vybrané kapitoly z matematiky určené speciálně pro studenty mechaniky a příbuzných oborů. Hlavní důraz je kladen na práci s funkcemi (prostory funkcí, ortogonálními systémy funkcí a ortogonálními transformacemi), dále pak numerické metody používané v mechanice.
Jazyk výuky
čeština
Počet kreditů
5
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Základy funkcionální analýzy, vektorové, unitární prostory, Hilbertův prostor, ortogonální systémy funkcí, Fourierovy řady, ortogonální transformace, Fourierova transformace a analýza spekter, fyzikální aplikace uvedených oblastí, variační metody
Prerekvizity
Matematická analýza a linearní algebra
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Zápočet na základě testu
Zkouška písemná event. i ústní
Zkouška písemná event. i ústní
Učební cíle
Kurs rozšiřuje základní kurs matematické analýzy o vybrané oblasti potřebné při studiu mechaniky a příbuzných oborů.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Nahrazení zameškané výuky je možné absolvováním testu.
Základní literatura
Bachman,G., Laerence, N.: Functional analysis, Dover Pub., 1966,2000
Kolmogorov,A.N.,Fomin,S.V.: Elements of the Theory of Functions and Functional Analysis, Graylock Press, 1957, 1961, 2002
Rektorys, K.: Variační metody, Academia Praha, 1999
Kolmogorov,A.N.,Fomin,S.V.: Elements of the Theory of Functions and Functional Analysis, Graylock Press, 1957, 1961, 2002
Rektorys, K.: Variační metody, Academia Praha, 1999
Doporučená literatura
Kolmogorov,A.N.,Fomin,S.V.: Základy teorie funkcí a funkcionální analýzy, SNTL Praha 1975
Rektorys, K.: Variační metody, Academia Praha, 1999
Veit, J. Integrální transformace: SNTL, Praha 1979
Rektorys, K.: Variační metody, Academia Praha, 1999
Veit, J. Integrální transformace: SNTL, Praha 1979
Elearning
eLearning: aktuální otevřený kurz
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Úvod
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostor, prostor L2
7. Ortogonální báze fukcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Užití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální
aplikace
12.Variační metody
13.Variační metody
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostor, prostor L2
7. Ortogonální báze fukcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Užití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální
aplikace
12.Variační metody
13.Variační metody
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
1. Opakování vybraných partií
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostor, prostor L2
7. Ortogonální báze funkcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Užití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální aplikace
12.Variační metody
13.Variační metody
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostor, prostor L2
7. Ortogonální báze funkcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Užití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální aplikace
12.Variační metody
13.Variační metody
Elearning
eLearning: aktuální otevřený kurz