Detail předmětu
Umělá inteligence
FSI-RAIAk. rok: 2020/2021
Kurz seznamuje se základními přístupy používanými v oblasti umělé inteligence, zahrnuje základy prohledávání stavového prostoru, stochastické optimalizace a strojového učení, především umělých neuronových sítí včetně konvolučních. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů s využitím odpovídajících nástrojů (Matlab, TensorFlow).
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Doporučená literatura
Elearning
Zařazení předmětu ve studijních plánech
- Program N-MET-P magisterský navazující 1 ročník, letní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Prohledávání stavového prostoru - úvod.
3. Neinformované a informované metody prohledávání stavového prostoru.
4. Teorie her – min/max algoritmus
5. Evoluční metody prohledávání stavového prostoru.
6. Základní paradigmata neuronových sítí
7. Učení s učitelem, učení bez učitele.
8. Metoda zpětného šíření.
9. Aproximace versus klasifikace.
10. Konvoluční neuronové sítě - úvod
11. Konvoluční neuronové sítě – topologie, konvoluční a poolingová vstva
12. Zpětnovazební učení
13. Q-učení
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. Implementace prohledávání do šířky, do hloubky
3. Dijkstrův algoritmus, A-star algoritmus
4. Min-max algoritmus
5. Implementace genetického algoritmu
6. Vrstvené sítě, Neural Network Toolbox
7. Vrstvené sítě – příklady
8. Konvoluční neuronová síť – Tensor Flow
9. Zpětnovazební učení a Q-učení
10. Práce na projektu, konzultace projektu
11. Práce na projektu, konzultace projektu
12. Práce na projektu, konzultace projektu
13. Prezentace projektu
Elearning