Detail předmětu

Matematické metody optimálního řízení

FSI-9MORAk. rok: 2020/2021

Předmět má seznámit studenty se základními pojmy a metodami užívanými v teorii optimálního řízení. Tyto poznatky tvoří nezbytný základ při řešení konkrétních úloh některých fyzikálních a inženýrských disciplin. Předmět zahrnuje následující témata:
Optimální regulace. Bellmanův princip optimality. Pontrjaginův princip princip maxima. Lineární úlohy časové optimalizace. Úlohy s omezenými fázovými souřadnicemi. Aplikace

Jazyk výuky

čeština

Zajišťuje ústav

Výsledky učení předmětu

Studenti získají po absolvování předmětu znalosti o základních metodách
řešení úloh optimálního řízení. Na vybraných úlohách se seznámí
s konstrukcí matematického modelu daného problému a s obvyklými
postupy užívanými při jeho řešení.

Prerekvizity

Diferenciální a integrální počet, obyčejné diferenciální rovnice.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.

Způsob a kritéria hodnocení

Zkouška prověřuje znalosti základních pojmů a vět
a praktickou dovednost při řešení vybraných úloh. Zkouška je
písemná, příp. i ústní.
Klasifikační hodnocení studenta: výborně (90-100 bodů), velmi dobře
(80-89 bodů), dobře (70-79 bodů), uspokojivě (60-69 bodů), dostatečně (50-59 bodů), nevyhovující (0-49 bodů). Bodové hodnocení může být modifikováno, avšak při zachování výše uvedených poměrů.

Učební cíle

Cílem předmětu je vysvětlit základní myšlenky a výsledky teorie
optimálního řízení, seznámit studenty s technikami, které se zde užívají,
a především ukázat způsob aplikace těchto výsledků při řešení
konkrétních úloh.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je doporučená. Výuka probíhá dle týdenních plánů rozvrhů. Stanovení způsobů náhrady zmeškané výuky je v kompetenci vyučujícího.

Základní literatura

Alexejev, V. M. - Tichomirov, V. M. - Fomin, S. V.: Matematická teorie optimálních procesů, Praha, 1991.
Lee, E. B. - Markus L.: Foundations of optimal control theory, New York, 1967.
Pontrjagin, L. S. - Boltjanskij, V. G. - Gamkrelidze, R. V. - Miščenko, E. F.: Matematičeskaja teorija optimalnych procesov, Moskva, 1961.

Doporučená literatura

Brunovský, P.: Matematická teória optimálneho riadenia, Bratislava, 1980.
Čermák, J.: Matematické základy optimálního řízení, Brno, 1998.
Víteček, A., Vítečková, M.: Optimální systémy řízení, Ostrava, 1999.

Zařazení předmětu ve studijních plánech

  • Program D4P-P doktorský

    obor D-APM , 1 ročník, letní semestr, doporučený kurs

  • Program D-KPI-P doktorský 1 ročník, letní semestr, doporučený kurs
  • Program D-APM-K doktorský 1 ročník, letní semestr, doporučený kurs

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Vyučující / Lektor

Osnova

1. Obecné schéma optimalizačních úloh a formulace základní úlohy optimálního řízení.
2. Dynamické programování. Bellmanův princip optimality.
3. Princip maxima.
4. Časová optimalizace rovnoměrného přímočarého pohybu.
5. Časová optimalizace jednoduchého harmonického pohybu.
6. Základní vlastnosti optimálních regulací.
7. Optimální řízení soustav s proměnnou hmotností.
8. Vybrané úlohy optimalizace letecké dynamiky.
9. Vybrané úlohy energetické optimalizace.
10. Optimalizační úlohy s omezenými fázovými souřadnicemi.