Detail předmětu
Vysoce náročné výpočty
FIT-VNDAk. rok: 2021/2022
Předmět je zaměřen na praktické metody řešení náročných vědecko-technických výpočtů. Provádí se rozbor numerického řešení soustav diferenciálních rovnic a hodnotí se paralelní spolupráce mikroprocesorů na principu diferenciálního počtu. Důraz je kladen na pochopení problematiky metod proměnného řádu a kroku (hp-metody). Pro numerické řešení obyčejných diferenciálních rovnic se používá originální metoda založená na přímém využití Taylorovy řady. K dispozici je simulační jazyk TKSL (FOS) s rovnicovým zápisem zadaného problému.
Uvádí se těsná souvislost rovnicového a blokového zápisu a analyzuje se blokové schéma jako datový vstup. Uvádí se numerické výpočty se zaměřením na následující technické problémy: řešení rozsáhlých soustav diferenciálních rovnic, řešení rozsáhlých soustav algebraických rovnic, řešení parciálních diferenciálních rovnic, stiff systémy, úlohy z regulace, elektrická simulace VLSI obvodů, modelování mechanických soustav, elektrostatické a elektromagnetické pole. Součástí předmětu je analýza paralelních algoritmů a návrh specializovaných architektur pro numerické řešení diferenciálních rovnic. Většina technických úloh vede na maticový zápis. Jednotlivé technické problémy budou rovněž řešeny v prostředí MATLAB/Simulink.
Okruhy otázek k SDZ
- Analytické řešení diferenciálních rovnic.
- Numerické řešení diferenciálních rovnic.
- Extrémně přesné řešení diferenciálních rovnic metodou Taylorovy řady, knihovní podprogramy přesných výpočtů.
- Paralelní vlastnosti metody Taylorovy řady, základy programování specializovaných paralelních úloh s využitím diferenciálního počtu (těsná souvislost rovnicového a blokového zápisu).
- Adjungované diferenciální operátory a paralelní řešení diferenciálních rovnic s časově proměnnými koeficienty.
- Metodika řešení rozsáhlých soustav algebraických rovnic převodem na obyčejné diferenciální rovnice.
- Fourierova řada a určité integrály.
- Simulace elektrických obvodů.
- Řešení praktických problémů popsaných parciálními diferenciálními rovnicemi.
- Koncepce elementárního procesoru specializovaného paralelního výpočetního systému.
Jazyk výuky
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
- Samostatné řešení netriviální soustavy diferenciálních rovnic.
Prerekvizity
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Doporučená literatura
Burden, R. L.: Numerical analysis, Cengage Learning, 2015
Butcher, J. C.: Numerical Methods for Ordinary Differential Equations, 3rd Edition, Wiley, 2016.
Corliss, G. F.: Automatic differentiation of algorithms, Springer-Verlag New York Inc., 2002
Čermák, L., Hlavička, R.: Numerické metody I, II, CERM, učební text FSI VUT Brno, 2008. (elektronicky dostupné z http://math.fme.vutbr.cz/Home/cermakl/soubory-ke-stazeni)
Duff, I. S.: Direct Methods for Sparse Matrices (Numerical Mathematics and Scientific Computation), Oxford University Press, 2017
Golub, G. H.: Matrix computations, Hopkins Uni. Press, 2013
Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 2008
Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987.
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, vol. Stiff And Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg, 1996.
Kozubek, T., Brzobohatý, T., Jarošová, M., Hapla, V., Markopoulos, A.: Lineární algebra s MATLABem, učební text MI21 VŠB-TU Ostrava, 2012 (elektronicky dostupné z http://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/linearni_algebra_s_matlabem.pdf)
Kunovský, J.: Modern Taylor Series Method, habilitation thesis, VUT Brno, 1995
LeVeque, R. J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems (Classics in Applied Mathematics), 2007
Meurant, G.: Computer Solution of Large Linear System, North Holland, 1999
Press, W. H.: Numerical recipes : the art of scientific computing, Cambridge University Press, 2007
Přednášky ve formátu PDF
Saad, Y.: Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003
Shampine, L. F.: Numerical Solution of ordinary differential equations, Chapman and Hall/CRC, 1994
Strang, G.: Introduction to applied mathematics, Wellesley-Cambridge Press, 1986
Strikwerda, J. C.: Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, 2004
Šebesta, V.: Systémy, procesy a signály I. VUTIUM, Brno, 2001.
Vavřín, P.: Teorie automatického řízení I (Lineární spojité a diskrétní systémy). VUT, Brno, 1991.
Vitásek,E.: Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia, Praha, 1994.
Zdrojové programy (TKSL, MATLAB, Simulink) jednotlivých počítačových cvičení
Zařazení předmětu ve studijních plánech
- Program DIT doktorský 0 ročník, letní semestr, povinně volitelný
- Program DIT doktorský 0 ročník, letní semestr, povinně volitelný
- Program VTI-DR-4 doktorský
obor DVI4 , 0 ročník, letní semestr, volitelný
- Program VTI-DR-4 doktorský
obor DVI4 , 0 ročník, letní semestr, volitelný
- Program DIT-EN doktorský 0 ročník, letní semestr, povinně volitelný
- Program DIT-EN doktorský 0 ročník, letní semestr, povinně volitelný
- Program VTI-DR-4 doktorský
obor DVI4 , 0 ročník, letní semestr, volitelný
- Program VTI-DR-4 doktorský
obor DVI4 , 0 ročník, letní semestr, volitelný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
- Metodika sériového a paralelního výpočtu (zpětnovazební stabilita paralelních výpočtů)
- Extrémně přesné řešení diferenciálních rovnic metodou Taylorovy řady
- Paralelní vlastnosti metody Taylorovy řady
- Základy programování specializovaných paralelních úloh s využitím diferenciálního počtu (těsná souvislost rovnicového a blokového zápisu)
- Paralelní řešení obyčejných diferenciálních rovnic s konstatními koeficienty
- Adjungované diferenciální operátory a paralelní řešení diferenciálních rovnic s časově proměnnými koeficienty
- Metodika řešení rozsáhlých soustav algebraických rovnic převodem na obyčejné diferenciální rovnice
- Paralelní aplikace Bairstowovy metody při hledání kořenů algebraických rovnic vysokých stupňů
- Fourierova řada a určité integrály
- Simulace elektrických obvodů
- Řešení praktických problémů popsaných parciálními diferenciálními rovnicemi
- Knihovní podprogramy přesných výpočtů
- Koncepce elementárního procesoru specializovaného paralelního výpočetního systému
Cvičení na počítači
Vyučující / Lektor
Osnova
- Simulační systém TKSL (FOS), MATLAB, Simulink
- Testovací příklady řešení exponenciálních funkcí
- Diferenciální rovnice 1. řádu
- Diferenciální rovnice 2. řádu
- Generování funkcí času
- Generování funkcí obecné proměnné
- Výpočet určitých integrálů
- Soustava lineárních algebraických rovnic
- Modelování elektronických obvodů
- Laplaceova rovnice
- Rovnice vedení tepla
- Vlnová rovnice
- Regulační obvody