Detail předmětu
Počítačové modelování elektrotechnických zařízení a komponentů
FEKT-BPC-MEMAk. rok: 2021/2022
Předmět se věnuje rozšíření základních poznatků z teoretické elektrotechniky, teorie elektromagnetického pole a numerického modelování při aplikaci vybraných numerických metod. Metoda konečných prvků a její možnosti pro řešení úloh elektromagnetického pole s příklady aplikací analýzy návrhů zařízení a komponentů cestou interpretace elektromagnetických polí zejména statických, stacionárních, kvazistacionárních a kvazistatických. Výuka je výrazně podpořena využitím zejména programových prostředků systému ANSYS (Multiphysic, Workbench, Maxwell). Prostředkem výuky je zvládnutí ANSYSu jako nástroje, je vysvětlován a procvičován přístup k programování a využití silných stránek systému, názorně demonstrována filozofie systému, ukázána a na příkladech procvičována návaznost na další CAD/CAE/CAM parametrického systému SOLIDWORKS.
Počítačová cvičení jsou připravena pro řešení vybraných úloh z široké oblasti elektrotechniky a elektroniky v prostředí ANSYS v návaznosti na 3D parametrický modelář - SOLIDWORKS.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
- definovat základní numerické modely - statický, kvazistatický pomocí soustředěných parametrů, získané v předmětech Elektrotechnika 1 a Elektrotechnika 2.
- popsat fyzikální model elektrostatické a magnetostatické úlohy z kurzů fyziky
- ovládat počítač na základní úrovni, zvládnout prostředí MATLAB, sestavit jednoduché algoritmy
- porozumět matematickému zápisu parciálních diferenciálních rovnic
- aplikovat matematický aparát diferenčního a diferenciálního počtu.
Plánované vzdělávací činnosti a výukové metody
Pro zvládnutí nástroje numerického modelování a profesionálního systému ANSYS, schopnosti správně vybrat matematický model, ten dále transformovat do numerického modelu - okrajové úlohy, provést efektivně a správně analýzu a intepretaci modelu, je výuka členěna na teoretické objasnění problematiky a jeho následné procvičení na jednoduchých příkladech.
Přednáška a cvičení proto následují v rozvrhu bezprostředně za sebou. Ve cvičení na počítačích je student individuálně veden v rámci bodů osnovy předmětu, je systematicky korigován a veden ke správné volbě postupu, posouzení vhodnosti použití nástrojů numerického přístupu analýzy modelu. Systematicky se postupuje od jednoduchých úloh elektrotechniky ke složitějším a zároveň se buduje dovednost a znalost využívání nástrojů modelování v systému ANSYS a návazného parametrického modeláře SOLIDWORKS.
Na konci každé lekce je student samostatně schopen vysvětlit každý krok sestavování modelu, jeho analýzy a interpretace s posouzením a obhájením výhodnosti zvoleného postupu.
Na konci předmětu je student samostatně schopen zdůvodnit zvolený postup, volbu modelu a nástrojů jeho řešení, je schopen předvídat možné komplikace a reorganizovat postup. Je schopen posoudit kvalitu a správnost řešení podle zadaných podmínek.
Způsob a kritéria hodnocení
Předmět je ukončen zápočtovým testem v rozsahu 0 až 60 bodů. Zde se prověřuje kvalita definování a popisu zadaného problému, identifikace matematického modelu s jeho následnou numerickou aplikací v systému ANSYS, kontroluje se správnost pochopení a porozumění zadávaní okrajových a počátečních podmínek, schopnost posoudit přesnost dosaženého řešení vyplývající z analýzy výsledků, schopnost studenta vylepšit model, zhodnotit dostupnost prostředků a vysvětlit případné rozdíly ve zvolených přístupech návrhu numerického modelu.
Osnovy výuky
1. Úvod do modelování a numerických metod, Metoda konečných prvků (MKP), základní úlohy (statická, stacionární, kvazistacionární, nestacionární)
2. Okrajové podmínky, vliv na kvalitu modelu, chyby, fyzikální interpretace modelu
3. Základní úlohy- statická, stacionární, kvazistacionární, nestacionární, matematický model, řešení matematického modelu, stabilita řešení, interpretace výsledků
4. Elektrostatické modely- příklady, zadání, okrajové podmínky, aplikační sféra
5. Magnetostatické modely- příklady, zadání, okrajové podmínky, aplikační sféra
6. Teplotní úlohy- matematický model, okrajové podmínky, aplikace, efekty vedení, proudění a radiace
7. Parametrické modely - nástroje, vazba na MPK, prostředí SOLIDWORKS
8. Zásady parametrického modelování, tvorba modelů pro analýzu MKP
9. Sdružené a vázané úlohy, popis, příklady v elektrotechnice
10. Fyzikální význam a interpretace výsledků, vyhodnocování a zobrazování výsledků, interpretace složitějších veličin
11. Nestacionární úlohy v elektrotechnice, vazba modelu na vlastnosti komponentů, přesnost analyzovaných výsledků
Počítačová cvičení:
1. Úvod, seznámení s prostředím ANSYS Workbench, Metoda konečných prvků (MKP), Základní analýzy MKP v systému ANSYS, moduly Workbench, Maxwell, Multiphysics
2. Základní dvoudimensionální (2D), 2D rotačně symetrická a třídimensionální (3D) úlohy elektrotechniky, statická, harmonická, přechodová analýza
3. Elektrostatická 2D úloha - popis, sestavení, analýza, interpretace výsledků
4. Magnetostatická 2D úloha s vazbou na obvodové prvky, popis, sestavení, analýza, interpretace výsledků, diskuze nad numerickými chybami - přesnost řešení a jejich korekce, nástroje
5. Popis, tipy a rozsah sdružených a vázaných úloh, procvičení příkladného řešení, zadání samostatných projektů pro studenty
6. Popis, ukázka a procvičení geometricky a matematicky složitější úlohy elektrotechniky, procvičení analýzy a používaných nástrojů systému ANSYS
7. Kategorizace a rozčlenění problematiky interpretací a vyhodnocování výsledků, příklad, ukázka nástrojů a jejich předností v systému ANSYS
8. Seznámení s prostředím SOLIDWORKS, návrh jednoduché 3D geometrie, model export do systému ANSYS a sestavení MKP modelu. Tvorba jednoduchých 2D a 3D modelů v SOLIDWORK
9. Tvorba složitějších 2D a 3D modelů v parametrickém modeláři, export numerického modelu MKP. Vlastní sestavení 3D úlohy, analýza MKP modelu s vazbou na parametrický modelářský systém a vyhodnocení výsledků
10. Odevzdání samostatných projektů, diskuze, obhajoba způsobu řešení, obhajoba zvoleného přístupu, oponování výsledků a přesnosti analýzy.
11. Zápočtový test, odevzdání samostatných projektů, uzavření předmětu.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Fiala P., Bachorec T., Kříž T.: Počítačové modelování elektrotechnických zařízení a komponentů, (BMEM), počítačová cvičení, IET/UTEE FEKT v Brně (CS)
KROUTILOVÁ, E.; STEINBAUER, M.; HADINEC, M.; FIALA, P.; BARTUŠEK, K. Numerické modelování nehomogenity v materiálech. ElectroScope - http://www.electroscope.zcu. cz, 2007, roč. 2007, č. 4, s. 1 ( s.)ISSN: 1802- 4564. (CS)
Zařazení předmětu ve studijních plánech
- Program BKC-SEE bakalářský 0 ročník, zimní semestr, volitelný
- Program BKC-TLI bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-AMT bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-AUD bakalářský
specializace AUDB-TECH , 0 ročník, zimní semestr, volitelný
- Program BPC-EKT bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-IBE bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-MET bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-SEE bakalářský 0 ročník, zimní semestr, volitelný
- Program BPC-TLI bakalářský 0 ročník, zimní semestr, volitelný
- Program BKC-EKT bakalářský 0 ročník, zimní semestr, volitelný
- Program BKC-MET bakalářský 0 ročník, zimní semestr, volitelný