Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail předmětu
FSI-RMEAk. rok: 2021/2022
Definice variačních úloh, ukázky ekvivalence integrování diferenciální rovnice a hledání minima vhodného funkcionálu. Slabé řešení. Funkcionály a operátory v Hilbertově prostoru. Variační principy lineární pružnosti. Hashinovy- Shtrikmanovy variační principy v mechanice složených materiálů. Metoda vážených residuí a přímé variační metody pro řešení okrajových problémů. Metoda hraničních integrálních rovnic. Greenův tenzor. Somiglianovy vzorce. Fundamentální řešení. Metody numerického řešení hraničních integrálních rovnic. Řešení úloh lomové mechaniky. Fyzikální a matematické aspekty stabilitních úloh. Stabilita pružných soustav, energetické kriterium stability, bifurkační a limitní body. Nelineární systémy a kriterium stability. Termodynamické pojetí stability. Teorie perkolace.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Doporučená literatura
Zařazení předmětu ve studijních plánech
specializace IME , 1 ročník, letní semestr, povinnýspecializace BIO , 1 ročník, letní semestr, povinný
Přednáška
Vyučující / Lektor
Osnova
Cvičení