Detail předmětu
Matematické metody v teorii proudění
FSI-SMMAk. rok: 2021/2022
Fyzikální základy mechaniky tekutin: zákony zachování hmoty, hybnosti a energie. Vlastnosti hyperbolických rovnic, speciálně Eulerových rovnic popisujících proudění neviskózních stlačitelných tekutin. Numerické modelování Eulerových rovnic metodou konečných objemů a nespojitou Galerkinovou metodou. Numerické modelování nestlačitelných viskózních tekutin metodou tlakových korekcí (algoritmus SIMPLE).
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
ZKOUŠKA: je ústní. Za zkoušku student obdrží 0 až 70 bodů.
HODNOCENÍ: se bude odvíjet od součtu bodů ze cvičení a zkoušky.
KLASIFIKACE: 100-90: A (výborně), 89-80: B (velmi dobře), 79-70: C (dobře), 69-60: D (uspokojivě), 59-50: E (dostatečně), 49-0: F (nevyhovující).
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
J.H. Ferziger, M. Peric: Computational Methods for Fluid Dynamics, Springer-Verlag, New York, 2002. (EN)
K. H. Versteeg, W. Malalasekera: An Introduction to Computational Fluid Dynamics, Pearson Prentice Hall, Harlow, 2007. (EN)
M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow, Oxford University Press, Oxford, 2003 (EN)
V. Dolejší, M. Feistauer: Discontinuous Galerkin Method, Springer, Heidelberg, 2016. (EN)
Doporučená literatura
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Zákon zachování energie, konstituční vztahy, stavové rovnice.
3. Eulerovy a Navierovy-Stokesovy rovnice, počáteční a okrajové podmínky.
4. Akustické rovnice, problém dopravního proudu, problém mělké vody.
5. Hyperbolický problém, klasické a slabé řešení, nespojitosti v řešení.
6. Riemannův problém pro lineární a nelineární úlohu, klasifikace vln.
7. Metoda konečných objemů, lokální chyba, stabilita, konvergence.
8. Godunovova metoda
9. Metody založené na rozkladu vektoru toku: numerický tok Vijayasundaram, Steger-Warming, Van Leer, Roe.
10. Okrajové podmínky, metody druhého řádu.
11. Nespojitá Galerkinova metoda pro stlačitelné neviskózní proudění: princip DGM, diskretizace 2D Eulerových rovnic.
12. Metoda konečných objemů pro viskózní nestlačitelné proudění: algoritmus SIMPLE na pravidelné obdélníkové síti.
13. Metoda konečných objemů pro viskózní nestlačitelné proudění: algoritmus SIMPLE na nestrukturované síti.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova