Detail předmětu

Optimalizace II

FSI-SO2-AAk. rok: 2021/2022

Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.

Jazyk výuky

angličtina

Počet kreditů

4

Garant předmětu

Zajišťuje ústav

Výsledky učení předmětu

Předmět je určen pro studenty matematického inženýrství, je užitečný pro studenty aplikovaných věd. Studenti prohloubí své znalosti teoretických základů optimalizace a osvojí si pokročilé algoritmy řešení optimalizačních úloh a rozvinou svoji představu o uplatnění optimalizačních modelů v typických aplikacích.

Prerekvizity

Přednášená látka vyžaduje znalosti základů optimalizace v rozsahu předmětu SOP.
Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Zkouška je udělena na základě hodnocení předložené písemné práce a
jejího přednesení v kolektivu zúčastněných studentů.

Učební cíle

Důraz je kladen na získání znalostí o pokročilých optimalizačních modelech.
Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech,
zameškaná výuka je nahrazována samostatným řešením zadaných úloh.

Základní literatura

Birge,J.R.-Louveaux,F.: Introduction to Stochastic Programing, 3rd  edition, Springer, 2011. (EN)
Kall, P.-Wallace,S.W.: Stochastic Programming, 2nd edition (open access), Wiley 2003. (EN)
Prekopa, A: Stochastic Programming, 2nd edition, Springer, 2010. (EN)

Doporučená literatura

Birge,J.R.-Louveaux,F.: Introduction to Stochastic Programing, 2nd edition, Springer, 2011. (EN)
Kall, P.-Wallace,S.W.: Stochastic Programming, 2nd edition (open access), Wiley 2003. (EN)
King, A.J., Wallace, S.W.: Modeling with Stochastic Programming, Springer Verlag, 2014. (EN)
Prekopa, A: Stochastic Programming, 2nd edition, Springer, 2010. (EN)
Ruszczyński, A. and Shapiro, A. (Editors): Stochastic Programming, Handbook in Operations Research and Management Science. Elsevier Science, Amsterdam, 2003. (EN)
Shapiro, A., Dentcheva, D., and Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory (3rd Edition). SIAM, Philadelphia, 2021. (EN)

Zařazení předmětu ve studijních plánech

  • Program M2A-A magisterský navazující

    obor M-MAI , 2 ročník, zimní semestr, povinný

  • Program N-MAI-A magisterský navazující 1 ročník, zimní semestr, povinný
    2 ročník, zimní semestr, povinný
  • Program N-AIM-A magisterský navazující 2 ročník, zimní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Původní úloha stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Příklady na:
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Účast na cvičení je povinná.