Detail předmětu

Geometrické algoritmy

FSI-0AVAk. rok: 2021/2022

Seznámení s pokročilými pojmy multilineární algebry a jejich aplikacemi zejména při transformacích Eukleidovského prostoru. Úvod do teorie geometrických algeber, řešení základních úloh analytické geometrie. Jednoduché geometrické algoritmy pro pohyb hmotného tělesa pomocí Eukleidovských transformací.

Jazyk výuky

čeština

Počet kreditů

3

Zajišťuje ústav

Výsledky učení předmětu

Posílení kompetencí při aplikování pokročilých matematických struktur.

Prerekvizity

Základy algebry a lineární algebry.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Výklad budou doprovázet ukázky výpočtů ve vhodném softwaru.

Způsob a kritéria hodnocení

Klasifikovaný zápočet: semestrální práce, ústní přezkoušení.

Učební cíle

Seznámení se s pokročilým aparátem vhodným pro řešení inženýrských úloh.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Přednáška, účast nepovinná.

Základní literatura

DORST, Leendert, D.H.F FONTIJNE a Stephen MANN. Geometric algebra for computer science: an object-oriented approach to geometry. Rev. ed. Burlington, Mass.: Morgan Kaufmann Publishers, c2007. Morgan Kaufmann series in computer graphics. ISBN 978-0-12-374942-0. (EN)
GONZÁLEZ CALVET, Ramon. Treatise of plane geometry through geometric algebra. 1. Cerdanyola del Vallés: [nakladatel není známý], 2007. TIMSAC. ISBN 978-84-611-9149-9. (EN)
HILDENBRAND, Dietmar. Foundations of geometric algebra computing. Geometry and computing, 8. ISBN 3642317936. (EN)
HILDENBRAND, Dietmar. Introduction to geometric algebra computing. Boca Raton, 2018. ISBN 978-149-8748-384. (EN)
MOTL, Luboš a Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Karolinum, 2002. ISBN 80-246-0421-3. (CS)
PERWASS, Christian. Geometric algebra with applications in engineering. Berlin: Springer, c2009. ISBN 354089067X. (EN)

Doporučená literatura

HILDENBRAND, Dietmar. Introduction to geometric algebra computing. Boca Raton, 2018. ISBN 978-149-8748-384. (EN)
MOTL, Luboš a Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Karolinum, 2002. ISBN 80-246-0421-3. (CS)

Zařazení předmětu ve studijních plánech

  • Program B-MAI-P bakalářský 2 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Opakování: vektorový prostor, báze, dimenze, bilineární a kvadratické formy.
2. Eukleidovské transformace dvou a tří dimenzionálního prostoru.
3. Vnější a vnitřní součin, vnější algebra.
4. Cliffordova algebra.
5.-6. Úvod do geometrické algebry, algebry CRA (G3,1) a CGA (G4,1).
7.-8. Výpočty v geometrických algebrách.
9. Řešení základních úloh analytické geometrie v geometrických algebrách.
10. Software pro symbolické výpočty a vizualizaci v geometrických algebrách (Python, CLUCalc).
11.-12. Eukleidovské transformace v geometrciké algebře, pohyb hmotného tělesa.
13. Konzultace semestrálních projektů.