Detail předmětu

Machine Learning

FEKT-MPA-MLRAk. rok: 2022/2023

Studenti získají rozhled v oblasti pokročilých metod strojového učení. Budou schopni popsat a porovnat vlastnosti jednotlivých přístupů pro klasifikaci dat. Budou schopni vybrat a aplikovat konkrétní přístup na daný problém. Získají také praktické zkušenosti s aktuálními implementacemi metod strojového učení včetně hlubokého učení.

Jazyk výuky

angličtina

Počet kreditů

5

Nabízen zahraničním studentům

Pouze domovské fakulty

Způsob a kritéria hodnocení

Během semestru lze získat maximálně 30 bodů. Na závěrečnou zkoušku pak maximálně 70 bodů.

Během semestru proběhne 6 testů, každý za maximálně 5 bodů. Testy nelze opakovat.

Podmínky udělení zápočtu jsou následující:
- plná účast na počítačových cvičení (max. dvě omluvené absence),
- získání alespoň 15 bodů z testů.

Získání zápočtu je podmínkou pro připuštění k závěrečné zkoušce.

Závěrečná zkouška bude ohodnocena max. 70 body. Pro úspěšné složení zkoušky je nutné získat minimálně 35 bodů.

Osnovy výuky

1. Úvod do problematiky klasifikace. Hodnocení klasifikátorů, chyba klasifikace, testování klasifikátorů.
2. Hodnocení příznaků, výběr a redukce příznaků pomocí základních a pokročilých metod (PCA, mRMR, t-SNE).
3. Lineární klasifikátory – základní principy a metody (perceptron, MSE, SVM).
4. "Kernel" přístup pro nelineární klasifikaci/regresi.
5. Bayesovský přístup ke klasifikaci. Klasikátor typu Naive Bayes.
6. Metody “Maximum likelihood” a “Maximum a-posteriori probability”.
7. Rozhodovací a regresní stromy a lesy, náhodné lesy.
8. Metody pro zlepšování vlastností klasifikátorů (bagging, boosting).
9. Základní principy umělých neuronových sítí, regularizační techniky.
10. Principy hlubokého učení, hluboké neuronové sítě (NS) a základní stavební bloky.
11. Principy učení hlubokých NS.
12. Varianty hlubokých NS, autoenkodéry, rekurentní NS, LSTM, GRU, GAN.
13. Aplikace klasifikačních úloh pro zpracování signálů, obrazů a bioinformatických dat. Příklady aplikací a frameworků.

Základní literatura

Deisenroth,M.P, Faisal, A.A, Ong, Ch.S.:Mathematics for Machine Learning, Cambridge University Press, 2020 (EN)
Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2. edition, O'Reilly Media (EN)
Ch. M. Bishop: Pattern Recognition and Machine Learning, Springer, 2011
I. Goodfellow, Y. Bengio, A. Courville, F. Bach: Deep Learning, The MIT Press, 2016
N. Buduma: Fundamentals of Deep Learning, O'Reilly Media, 2017 (CS)

Elearning

Zařazení předmětu ve studijních plánech

  • Program MPAD-BIO magisterský navazující 2 ročník, zimní semestr, povinný
  • Program MPC-BIO magisterský navazující 2 ročník, zimní semestr, povinný
  • Program MPC-BTB magisterský navazující 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Elearning